
How do you prove from the definition of differentiability that the function $f\left( x \right) = \dfrac{{2x + 1}}{{x - 2}}$ is differentiable?
Answer
547.5k+ views
Hint: This question is based on the definition of differentiability. The definition is: let $f:\mathbb{R} \to \mathbb{R}$, be a function f is differentiable at x, if the following limit exists: $\mathop {\lim }\limits_{t \to x} \dfrac{{f\left( t \right) - f\left( x \right)}}{{t - x}}$, where, $t \in \mathbb{R}$ and $t \ne x$. This equation is called the derivative of f at x, and it is denoted by $f'\left( x \right)$.
Complete step-by-step solution:
In this question, the function is given as below.
$ \Rightarrow f\left( x \right) = \dfrac{{2x + 1}}{{x - 2}}$
Here, $x \in \mathbb{R} - \left\{ 2 \right\}$
Now, the definition of differentiability is as stated below.
Let $f:\mathbb{R} \to \mathbb{R}$, be a function f is differentiable at x, if the following limit exists: $\mathop {\lim }\limits_{t \to x} \dfrac{{f\left( t \right) - f\left( x \right)}}{{t - x}}$, where, $t \in \mathbb{R}$ and $t \ne x$. This equation is called the derivative of f at x, and it is denoted by $f'\left( x \right)$.
Therefore,
$ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{t \to x} \dfrac{{f\left( t \right) - f\left( x \right)}}{{t - x}}$ ...(1)
Let us know the value of $f\left( t \right)$.
$ \Rightarrow f\left( t \right) = \dfrac{{2t + 1}}{{t - 2}}$
Where, $t \in \mathbb{R} - \left\{ 2 \right\},t \ne x$
Now, let us find the value of,
$ \Rightarrow f\left( t \right) - f\left( x \right)$
Substitute the values of $f\left( t \right)$ and $f\left( x \right)$.
$ \Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{2t + 1}}{{t - 2}} - \dfrac{{2x + 1}}{{x - 2}}$
Let us take LCM on the right-hand side.
$ \Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{\left( {2t + 1} \right)\left( {x - 2} \right) - \left( {2x + 1} \right)\left( {t - 2} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$
Let us multiply the numerator to remove the brackets.
$ \Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{\left( {2tx - 4t + x - 2} \right) - \left( {2tx - 4x + t - 2} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$
Let us open the brackets of the numerator.
$ \Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{2tx - 4t + x - 2 - 2tx + 4x - t + 2}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$
Let us simplify the above step.
$ \Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{ - 5t + 5x}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$
Let us take out -5 as a common factor from the numerator.
$ \Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{ - 5\left( {t - x} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$
Now, let us substitute this value in the equation (1).
$ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{t \to x} \dfrac{{f\left( t \right) - f\left( x \right)}}{{t - x}}$
Put $f\left( t \right) - f\left( x \right) = \dfrac{{ - 5\left( {t - x} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$ in the above equation.
$ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{t \to x} \dfrac{{\dfrac{{ - 5\left( {t - x} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}}}{{t - x}}$
That is equal to,
$ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{t \to x} \dfrac{{ - 5}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$
Now, let us apply the limit $t \to x$.
$ \Rightarrow f'\left( x \right) = \dfrac{{ - 5}}{{\left( {x - 2} \right)\left( {x - 2} \right)}}$
Let us simplify the denominator on the right-hand side.
$ \Rightarrow f'\left( x \right) = \dfrac{{ - 5}}{{{{\left( {x - 2} \right)}^2}}}$
Hence, we find that the limit in the given function exists. The given function is differentiable at $x \in \mathbb{R} - \left\{ 2 \right\}$, and $ \Rightarrow f'\left( x \right) = \dfrac{{ - 5}}{{{{\left( {x - 2} \right)}^2}}}$, $x \in \mathbb{R} - \left\{ 2 \right\}$.
Note: The function $f\left( x \right)$ is said to be non-differentiable if,
Both right-hand derivative (RHD) and left-hand derivative (LHD) exist but not equal.
Either or both RHD and LHD are not finite.
Either or both RHD and LHD do not exist.
Complete step-by-step solution:
In this question, the function is given as below.
$ \Rightarrow f\left( x \right) = \dfrac{{2x + 1}}{{x - 2}}$
Here, $x \in \mathbb{R} - \left\{ 2 \right\}$
Now, the definition of differentiability is as stated below.
Let $f:\mathbb{R} \to \mathbb{R}$, be a function f is differentiable at x, if the following limit exists: $\mathop {\lim }\limits_{t \to x} \dfrac{{f\left( t \right) - f\left( x \right)}}{{t - x}}$, where, $t \in \mathbb{R}$ and $t \ne x$. This equation is called the derivative of f at x, and it is denoted by $f'\left( x \right)$.
Therefore,
$ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{t \to x} \dfrac{{f\left( t \right) - f\left( x \right)}}{{t - x}}$ ...(1)
Let us know the value of $f\left( t \right)$.
$ \Rightarrow f\left( t \right) = \dfrac{{2t + 1}}{{t - 2}}$
Where, $t \in \mathbb{R} - \left\{ 2 \right\},t \ne x$
Now, let us find the value of,
$ \Rightarrow f\left( t \right) - f\left( x \right)$
Substitute the values of $f\left( t \right)$ and $f\left( x \right)$.
$ \Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{2t + 1}}{{t - 2}} - \dfrac{{2x + 1}}{{x - 2}}$
Let us take LCM on the right-hand side.
$ \Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{\left( {2t + 1} \right)\left( {x - 2} \right) - \left( {2x + 1} \right)\left( {t - 2} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$
Let us multiply the numerator to remove the brackets.
$ \Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{\left( {2tx - 4t + x - 2} \right) - \left( {2tx - 4x + t - 2} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$
Let us open the brackets of the numerator.
$ \Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{2tx - 4t + x - 2 - 2tx + 4x - t + 2}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$
Let us simplify the above step.
$ \Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{ - 5t + 5x}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$
Let us take out -5 as a common factor from the numerator.
$ \Rightarrow f\left( t \right) - f\left( x \right) = \dfrac{{ - 5\left( {t - x} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$
Now, let us substitute this value in the equation (1).
$ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{t \to x} \dfrac{{f\left( t \right) - f\left( x \right)}}{{t - x}}$
Put $f\left( t \right) - f\left( x \right) = \dfrac{{ - 5\left( {t - x} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$ in the above equation.
$ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{t \to x} \dfrac{{\dfrac{{ - 5\left( {t - x} \right)}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}}}{{t - x}}$
That is equal to,
$ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{t \to x} \dfrac{{ - 5}}{{\left( {t - 2} \right)\left( {x - 2} \right)}}$
Now, let us apply the limit $t \to x$.
$ \Rightarrow f'\left( x \right) = \dfrac{{ - 5}}{{\left( {x - 2} \right)\left( {x - 2} \right)}}$
Let us simplify the denominator on the right-hand side.
$ \Rightarrow f'\left( x \right) = \dfrac{{ - 5}}{{{{\left( {x - 2} \right)}^2}}}$
Hence, we find that the limit in the given function exists. The given function is differentiable at $x \in \mathbb{R} - \left\{ 2 \right\}$, and $ \Rightarrow f'\left( x \right) = \dfrac{{ - 5}}{{{{\left( {x - 2} \right)}^2}}}$, $x \in \mathbb{R} - \left\{ 2 \right\}$.
Note: The function $f\left( x \right)$ is said to be non-differentiable if,
Both right-hand derivative (RHD) and left-hand derivative (LHD) exist but not equal.
Either or both RHD and LHD are not finite.
Either or both RHD and LHD do not exist.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

