
Prove
\[\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} = 1\]
Answer
497.7k+ views
Hint: In this question, we have to prove that
\[\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)}\] is equal to \[1\] . First we need to consider the left hand side of the given expression. In order to prove this,we need to use the concepts of trigonometric identities. By using trigonometric identities and functions, we can prove this expression easily.
Complete answer:
Consider the left part of the expression,
$\Rightarrow$ \[\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)}\] ••• (1)
We know that the value of \[\pi\] is \[180°\]
$\Rightarrow$ \[2\pi = 2(180°)\]
By multiplying,
We get,
\[2\pi = 360°\]
We can rewrite \[cos(2\pi + x)\] as \[{cosx}\], since it lies in the first quadrant.
Similarly, we can also rewrite \[cosec(2\pi + x)\] as \[{cosec x}\], since it lies in the first quadrant.
Now we need to find \[tan(\dfrac{\pi}{2} + x)\],
We know that \[tanx = \dfrac{{sinx}}{{cosx}}\]
\(tan(\dfrac{\pi}{2} + x)\ = \dfrac{\sin\left( \dfrac{\pi}{2} + x \right)}{\cos\left( \left( \dfrac{\pi}{2} \right) + x \right)}\ \)
We also know that,
\[sin(A + B)\ = sinAcosB + cosAsinB\]
\[cos(A + B)\ = cosAcosB – sinAsinB\]
Thus we get,
\[tan(\dfrac{\pi}{2} + x)\ = \dfrac{\sin\left( \frac{\pi}{2} \right)cosx + \cos\left( \dfrac{\pi}{2} \right){sinx}}{\cos\left( \dfrac{\pi}{2} \right)cosx - \sin\left( \dfrac{\pi}{2} \right){sinx}}\ \]
We know that,
\[s{in}\left( \dfrac{\pi}{2} \right) = 1\]
\[c{os}\left( \dfrac{\pi}{2} \right) = 0\]
By substituting the values,
We get,
$\Rightarrow$ \[\tan\left( \left( \frac{\pi}{2} \right) + x \right)\ = \frac{1 \times cosx + 0}{0 – 1 \times sinx}\]
\[= \dfrac{{cosx}}{- sinx}\]
We know that \[\dfrac{{cosx}}{{sinx}}\] is \[{cotx}\]
Thus we get,
$\Rightarrow$ \[\tan\left( \left( \frac{\pi}{2} \right) + x \right) = - cotx\]
Similarly, we need to find for
\[\sec\left( \left( \dfrac{\pi}{2} \right) + x \right)\]
$\Rightarrow$ \[\sec\left( \left( \dfrac{\pi}{2} \right) + x \right) = \dfrac{1}{\cos\left( \left( \dfrac{\pi}{2} \right) + x \right)}\]
We know that \[cos(\left( \dfrac{\pi}{2} \right) + x)\] is \[\ - sinx\]
Thus we get,
\[\sec\left( \left( \dfrac{\pi}{2} \right) + x \right) = \dfrac{1}{- sinx}\]
We also know that \[\dfrac{1}{\sin x}\ \] is \[{cosecx}\]
Thus we get,
\[\sec\left( \left( \dfrac{\pi}{2} \right) + x \right) = - cosecx\]
Then by rewriting the terms in (1),
We get,
$\Rightarrow$ \[\dfrac{{cosxcosecx}\left( - cotx \right)}{\left( - cosecx \right){cosxcotx}}\]
By simplifying,
We get,
\[\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} = 1\]
Thus we have proved that,
\[\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} = 1\]
Final answer :
\[\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} = 1\]
Note:
The concept used to prove the given expression is trigonometric identities. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. The common technique used in this problem is the substitution rule with the use of trigonometric functions.
\[\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)}\] is equal to \[1\] . First we need to consider the left hand side of the given expression. In order to prove this,we need to use the concepts of trigonometric identities. By using trigonometric identities and functions, we can prove this expression easily.
Complete answer:
Consider the left part of the expression,
$\Rightarrow$ \[\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)}\] ••• (1)
We know that the value of \[\pi\] is \[180°\]
$\Rightarrow$ \[2\pi = 2(180°)\]
By multiplying,
We get,
\[2\pi = 360°\]
We can rewrite \[cos(2\pi + x)\] as \[{cosx}\], since it lies in the first quadrant.
Similarly, we can also rewrite \[cosec(2\pi + x)\] as \[{cosec x}\], since it lies in the first quadrant.
Now we need to find \[tan(\dfrac{\pi}{2} + x)\],
We know that \[tanx = \dfrac{{sinx}}{{cosx}}\]
\(tan(\dfrac{\pi}{2} + x)\ = \dfrac{\sin\left( \dfrac{\pi}{2} + x \right)}{\cos\left( \left( \dfrac{\pi}{2} \right) + x \right)}\ \)
We also know that,
\[sin(A + B)\ = sinAcosB + cosAsinB\]
\[cos(A + B)\ = cosAcosB – sinAsinB\]
Thus we get,
\[tan(\dfrac{\pi}{2} + x)\ = \dfrac{\sin\left( \frac{\pi}{2} \right)cosx + \cos\left( \dfrac{\pi}{2} \right){sinx}}{\cos\left( \dfrac{\pi}{2} \right)cosx - \sin\left( \dfrac{\pi}{2} \right){sinx}}\ \]
We know that,
\[s{in}\left( \dfrac{\pi}{2} \right) = 1\]
\[c{os}\left( \dfrac{\pi}{2} \right) = 0\]
By substituting the values,
We get,
$\Rightarrow$ \[\tan\left( \left( \frac{\pi}{2} \right) + x \right)\ = \frac{1 \times cosx + 0}{0 – 1 \times sinx}\]
\[= \dfrac{{cosx}}{- sinx}\]
We know that \[\dfrac{{cosx}}{{sinx}}\] is \[{cotx}\]
Thus we get,
$\Rightarrow$ \[\tan\left( \left( \frac{\pi}{2} \right) + x \right) = - cotx\]
Similarly, we need to find for
\[\sec\left( \left( \dfrac{\pi}{2} \right) + x \right)\]
$\Rightarrow$ \[\sec\left( \left( \dfrac{\pi}{2} \right) + x \right) = \dfrac{1}{\cos\left( \left( \dfrac{\pi}{2} \right) + x \right)}\]
We know that \[cos(\left( \dfrac{\pi}{2} \right) + x)\] is \[\ - sinx\]
Thus we get,
\[\sec\left( \left( \dfrac{\pi}{2} \right) + x \right) = \dfrac{1}{- sinx}\]
We also know that \[\dfrac{1}{\sin x}\ \] is \[{cosecx}\]
Thus we get,
\[\sec\left( \left( \dfrac{\pi}{2} \right) + x \right) = - cosecx\]
Then by rewriting the terms in (1),
We get,
$\Rightarrow$ \[\dfrac{{cosxcosecx}\left( - cotx \right)}{\left( - cosecx \right){cosxcotx}}\]
By simplifying,
We get,
\[\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} = 1\]
Thus we have proved that,
\[\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} = 1\]
Final answer :
\[\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} = 1\]
Note:
The concept used to prove the given expression is trigonometric identities. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. The common technique used in this problem is the substitution rule with the use of trigonometric functions.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

