
How do you prove $ \dfrac{{1 + \sin x}}{{1 - \sin x}} = {(\sec x + \tan x)^2} $ ?
Answer
497.4k+ views
Hint: In order to proof the above statement ,take LHS first and Multiply divide with $ 1 + \sin x $ and then use $ {A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2} $ in the numerator to expand and $ (A + b)(A - B) = {A^2} - {B^2} $ in the denominator to proof that LHS =RHS
Complete step-by-step answer:
To prove: $ \dfrac{{1 + \sin x}}{{1 - \sin x}} = {(\sec x + \tan x)^2} $
Proof:
Taking Left-hand Side,
$ \Rightarrow \dfrac{{1 + \sin x}}{{1 - \sin x}} $
Multiply and divide with $ 1 + \sin x $ in above expression
$
\Rightarrow \left( {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right)\left( {\dfrac{{1 + \sin x}}{{1 + \sin x}}} \right) \\
\Rightarrow \dfrac{{{{\left( {1 + \sin x} \right)}^2}}}{{\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)}} \\
$
In denominator using formula $ (A + b)(A - B) = {A^2} - {B^2} $
And expanding numerator with the formula $ $ $ {A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2} $
$ \Rightarrow \dfrac{{1 + {{\sin }^2}x + 2\sin x}}{{1 - {{\sin }^2}x}} $
Using trigonometric identity $ {\cos ^2}x = 1 - {\sin ^2}x $
\[
\Rightarrow \dfrac{{1 + {{\sin }^2}x + 2\sin x}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{1}{{{{\cos }^2}x}} + \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \dfrac{{2\sin x}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{1}{{{{\cos }^2}x}} + \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \dfrac{{2\sin x}}{{\cos x}}\dfrac{1}{{\cos x}} \;
\]
Using rule of trigonometry \[\dfrac{1}{{{{\cos }^2}x}} = {\sec ^2}x\,or\,\dfrac{1}{{\cos x}} = \sec x\] , \[\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = {\tan ^2}x\] or \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]
\[ \Rightarrow {\sec ^{2x}} + {\tan ^2}x + 2\tan x\sec x\]
Expression appear to be of the $ {A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2} $
\[ \Rightarrow {\left( {\sec x + \tan x} \right)^2}\]
Taking Right-Hand Side
$ {(\sec x + \tan x)^2} $
Therefore, LHS=RHS
Hence Proved.
Note: 1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2. Periodic Function= A function $ f(x) $ is said to be a periodic function if there exists a real number T > 0 such that $ f(x + T) = f(x) $ for all x.
If T is the smallest positive real number such that $ f(x + T) = f(x) $ for all x, then T is called the fundamental period of $ f(x) $ .
Since $ \sin \,(2n\pi + \theta ) = \sin \theta $ for all values of $ \theta $ and n $ \in $ N.
3. Even Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = f(x) $ for all x in its domain.
Odd Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = - f(x) $ for all x in its domain.
We know that $ \sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta $
Therefore, $ \sin \theta $ and $ \tan \theta $ and their reciprocals, $ \cos ec\theta $ and $ \cot \theta $ are odd functions whereas \[\cos \theta \] and its reciprocal \[\sec \theta \] are even functions.
Complete step-by-step answer:
To prove: $ \dfrac{{1 + \sin x}}{{1 - \sin x}} = {(\sec x + \tan x)^2} $
Proof:
Taking Left-hand Side,
$ \Rightarrow \dfrac{{1 + \sin x}}{{1 - \sin x}} $
Multiply and divide with $ 1 + \sin x $ in above expression
$
\Rightarrow \left( {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right)\left( {\dfrac{{1 + \sin x}}{{1 + \sin x}}} \right) \\
\Rightarrow \dfrac{{{{\left( {1 + \sin x} \right)}^2}}}{{\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)}} \\
$
In denominator using formula $ (A + b)(A - B) = {A^2} - {B^2} $
And expanding numerator with the formula $ $ $ {A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2} $
$ \Rightarrow \dfrac{{1 + {{\sin }^2}x + 2\sin x}}{{1 - {{\sin }^2}x}} $
Using trigonometric identity $ {\cos ^2}x = 1 - {\sin ^2}x $
\[
\Rightarrow \dfrac{{1 + {{\sin }^2}x + 2\sin x}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{1}{{{{\cos }^2}x}} + \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \dfrac{{2\sin x}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{1}{{{{\cos }^2}x}} + \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \dfrac{{2\sin x}}{{\cos x}}\dfrac{1}{{\cos x}} \;
\]
Using rule of trigonometry \[\dfrac{1}{{{{\cos }^2}x}} = {\sec ^2}x\,or\,\dfrac{1}{{\cos x}} = \sec x\] , \[\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = {\tan ^2}x\] or \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]
\[ \Rightarrow {\sec ^{2x}} + {\tan ^2}x + 2\tan x\sec x\]
Expression appear to be of the $ {A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2} $
\[ \Rightarrow {\left( {\sec x + \tan x} \right)^2}\]
Taking Right-Hand Side
$ {(\sec x + \tan x)^2} $
Therefore, LHS=RHS
Hence Proved.
Note: 1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2. Periodic Function= A function $ f(x) $ is said to be a periodic function if there exists a real number T > 0 such that $ f(x + T) = f(x) $ for all x.
If T is the smallest positive real number such that $ f(x + T) = f(x) $ for all x, then T is called the fundamental period of $ f(x) $ .
Since $ \sin \,(2n\pi + \theta ) = \sin \theta $ for all values of $ \theta $ and n $ \in $ N.
3. Even Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = f(x) $ for all x in its domain.
Odd Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = - f(x) $ for all x in its domain.
We know that $ \sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta $
Therefore, $ \sin \theta $ and $ \tan \theta $ and their reciprocals, $ \cos ec\theta $ and $ \cot \theta $ are odd functions whereas \[\cos \theta \] and its reciprocal \[\sec \theta \] are even functions.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
