
How do you prove $ \dfrac{{1 + \sin x}}{{1 - \sin x}} = {(\sec x + \tan x)^2} $ ?
Answer
558.6k+ views
Hint: In order to proof the above statement ,take LHS first and Multiply divide with $ 1 + \sin x $ and then use $ {A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2} $ in the numerator to expand and $ (A + b)(A - B) = {A^2} - {B^2} $ in the denominator to proof that LHS =RHS
Complete step-by-step answer:
To prove: $ \dfrac{{1 + \sin x}}{{1 - \sin x}} = {(\sec x + \tan x)^2} $
Proof:
Taking Left-hand Side,
$ \Rightarrow \dfrac{{1 + \sin x}}{{1 - \sin x}} $
Multiply and divide with $ 1 + \sin x $ in above expression
$
\Rightarrow \left( {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right)\left( {\dfrac{{1 + \sin x}}{{1 + \sin x}}} \right) \\
\Rightarrow \dfrac{{{{\left( {1 + \sin x} \right)}^2}}}{{\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)}} \\
$
In denominator using formula $ (A + b)(A - B) = {A^2} - {B^2} $
And expanding numerator with the formula $ $ $ {A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2} $
$ \Rightarrow \dfrac{{1 + {{\sin }^2}x + 2\sin x}}{{1 - {{\sin }^2}x}} $
Using trigonometric identity $ {\cos ^2}x = 1 - {\sin ^2}x $
\[
\Rightarrow \dfrac{{1 + {{\sin }^2}x + 2\sin x}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{1}{{{{\cos }^2}x}} + \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \dfrac{{2\sin x}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{1}{{{{\cos }^2}x}} + \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \dfrac{{2\sin x}}{{\cos x}}\dfrac{1}{{\cos x}} \;
\]
Using rule of trigonometry \[\dfrac{1}{{{{\cos }^2}x}} = {\sec ^2}x\,or\,\dfrac{1}{{\cos x}} = \sec x\] , \[\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = {\tan ^2}x\] or \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]
\[ \Rightarrow {\sec ^{2x}} + {\tan ^2}x + 2\tan x\sec x\]
Expression appear to be of the $ {A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2} $
\[ \Rightarrow {\left( {\sec x + \tan x} \right)^2}\]
Taking Right-Hand Side
$ {(\sec x + \tan x)^2} $
Therefore, LHS=RHS
Hence Proved.
Note: 1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2. Periodic Function= A function $ f(x) $ is said to be a periodic function if there exists a real number T > 0 such that $ f(x + T) = f(x) $ for all x.
If T is the smallest positive real number such that $ f(x + T) = f(x) $ for all x, then T is called the fundamental period of $ f(x) $ .
Since $ \sin \,(2n\pi + \theta ) = \sin \theta $ for all values of $ \theta $ and n $ \in $ N.
3. Even Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = f(x) $ for all x in its domain.
Odd Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = - f(x) $ for all x in its domain.
We know that $ \sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta $
Therefore, $ \sin \theta $ and $ \tan \theta $ and their reciprocals, $ \cos ec\theta $ and $ \cot \theta $ are odd functions whereas \[\cos \theta \] and its reciprocal \[\sec \theta \] are even functions.
Complete step-by-step answer:
To prove: $ \dfrac{{1 + \sin x}}{{1 - \sin x}} = {(\sec x + \tan x)^2} $
Proof:
Taking Left-hand Side,
$ \Rightarrow \dfrac{{1 + \sin x}}{{1 - \sin x}} $
Multiply and divide with $ 1 + \sin x $ in above expression
$
\Rightarrow \left( {\dfrac{{1 + \sin x}}{{1 - \sin x}}} \right)\left( {\dfrac{{1 + \sin x}}{{1 + \sin x}}} \right) \\
\Rightarrow \dfrac{{{{\left( {1 + \sin x} \right)}^2}}}{{\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)}} \\
$
In denominator using formula $ (A + b)(A - B) = {A^2} - {B^2} $
And expanding numerator with the formula $ $ $ {A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2} $
$ \Rightarrow \dfrac{{1 + {{\sin }^2}x + 2\sin x}}{{1 - {{\sin }^2}x}} $
Using trigonometric identity $ {\cos ^2}x = 1 - {\sin ^2}x $
\[
\Rightarrow \dfrac{{1 + {{\sin }^2}x + 2\sin x}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{1}{{{{\cos }^2}x}} + \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \dfrac{{2\sin x}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{1}{{{{\cos }^2}x}} + \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \dfrac{{2\sin x}}{{\cos x}}\dfrac{1}{{\cos x}} \;
\]
Using rule of trigonometry \[\dfrac{1}{{{{\cos }^2}x}} = {\sec ^2}x\,or\,\dfrac{1}{{\cos x}} = \sec x\] , \[\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = {\tan ^2}x\] or \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]
\[ \Rightarrow {\sec ^{2x}} + {\tan ^2}x + 2\tan x\sec x\]
Expression appear to be of the $ {A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2} $
\[ \Rightarrow {\left( {\sec x + \tan x} \right)^2}\]
Taking Right-Hand Side
$ {(\sec x + \tan x)^2} $
Therefore, LHS=RHS
Hence Proved.
Note: 1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2. Periodic Function= A function $ f(x) $ is said to be a periodic function if there exists a real number T > 0 such that $ f(x + T) = f(x) $ for all x.
If T is the smallest positive real number such that $ f(x + T) = f(x) $ for all x, then T is called the fundamental period of $ f(x) $ .
Since $ \sin \,(2n\pi + \theta ) = \sin \theta $ for all values of $ \theta $ and n $ \in $ N.
3. Even Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = f(x) $ for all x in its domain.
Odd Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = - f(x) $ for all x in its domain.
We know that $ \sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta $
Therefore, $ \sin \theta $ and $ \tan \theta $ and their reciprocals, $ \cos ec\theta $ and $ \cot \theta $ are odd functions whereas \[\cos \theta \] and its reciprocal \[\sec \theta \] are even functions.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

