
Prove :
\[\dfrac{{1 + cosx + sinx}}{{1 + cosx - sinx}} = \dfrac{{1 + sinx}}{{cosx}}\;\]
Answer
553.8k+ views
Hint: To prove the given trigonometric expression start solving from LHS. First divide each term of numerator and denominator by \[\;cosx\] then apply the trigonometric formulas as required and solve LHS we will get the RHS.
Complete step-by-step answer:
LHS is given as
\[\dfrac{{1 + cosx + sinx}}{{1 + cosx - sinx}}\]
Dividing each terms of numerators and denominator by \[\;cosx\]
We get,
\[\dfrac{{secx + 1 + tanx}}{{secx + 1 - tanx}}\]
now write \[1 = se{c^2}x - ta{n^2}x\] in the above equation
\[\dfrac{{secx + tanx + se{c^2}x - ta{n^2}x}}{{secx + 1 - tanx}}\]
now break \[se{c^2}x - ta{n^2}x\] into \[\left( {secx - tanx} \right)\left( {secx + tanx} \right)\]
\[\dfrac{{secx + tanx + \left( {secx - tanx} \right)\left( {secx + tanx} \right)}}{{secx + 1 - tanx}}\]
now take \[secx + tanx\] as common
\[\dfrac{{secx + tanx\left( {secx - tanx + 1} \right)}}{{secx + 1 - tanx}}\]
cancelling the like terms we get,
\[secx + tanx\]
now write all the trigonometric ratios in terms of $ \cos x $ and \[\;sinx\]
we get,
\[\dfrac{1}{{cosx}} + \dfrac{{sinx}}{{cosx}} = \dfrac{{1 + sinx}}{{cosx}}\]
Hence \[LHS = RHS\]
Note: Instead of dividing each term of numerator and denominator by $ \cos x $ we can also divide by \[\;sinx\] each term of numerator and denominator we will get the same result. Students can take this as an example to try out the other method.
Complete step-by-step answer:
LHS is given as
\[\dfrac{{1 + cosx + sinx}}{{1 + cosx - sinx}}\]
Dividing each terms of numerators and denominator by \[\;cosx\]
We get,
\[\dfrac{{secx + 1 + tanx}}{{secx + 1 - tanx}}\]
now write \[1 = se{c^2}x - ta{n^2}x\] in the above equation
\[\dfrac{{secx + tanx + se{c^2}x - ta{n^2}x}}{{secx + 1 - tanx}}\]
now break \[se{c^2}x - ta{n^2}x\] into \[\left( {secx - tanx} \right)\left( {secx + tanx} \right)\]
\[\dfrac{{secx + tanx + \left( {secx - tanx} \right)\left( {secx + tanx} \right)}}{{secx + 1 - tanx}}\]
now take \[secx + tanx\] as common
\[\dfrac{{secx + tanx\left( {secx - tanx + 1} \right)}}{{secx + 1 - tanx}}\]
cancelling the like terms we get,
\[secx + tanx\]
now write all the trigonometric ratios in terms of $ \cos x $ and \[\;sinx\]
we get,
\[\dfrac{1}{{cosx}} + \dfrac{{sinx}}{{cosx}} = \dfrac{{1 + sinx}}{{cosx}}\]
Hence \[LHS = RHS\]
Note: Instead of dividing each term of numerator and denominator by $ \cos x $ we can also divide by \[\;sinx\] each term of numerator and denominator we will get the same result. Students can take this as an example to try out the other method.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

