
Prove :
\[\dfrac{{1 + cosx + sinx}}{{1 + cosx - sinx}} = \dfrac{{1 + sinx}}{{cosx}}\;\]
Answer
568.8k+ views
Hint: To prove the given trigonometric expression start solving from LHS. First divide each term of numerator and denominator by \[\;cosx\] then apply the trigonometric formulas as required and solve LHS we will get the RHS.
Complete step-by-step answer:
LHS is given as
\[\dfrac{{1 + cosx + sinx}}{{1 + cosx - sinx}}\]
Dividing each terms of numerators and denominator by \[\;cosx\]
We get,
\[\dfrac{{secx + 1 + tanx}}{{secx + 1 - tanx}}\]
now write \[1 = se{c^2}x - ta{n^2}x\] in the above equation
\[\dfrac{{secx + tanx + se{c^2}x - ta{n^2}x}}{{secx + 1 - tanx}}\]
now break \[se{c^2}x - ta{n^2}x\] into \[\left( {secx - tanx} \right)\left( {secx + tanx} \right)\]
\[\dfrac{{secx + tanx + \left( {secx - tanx} \right)\left( {secx + tanx} \right)}}{{secx + 1 - tanx}}\]
now take \[secx + tanx\] as common
\[\dfrac{{secx + tanx\left( {secx - tanx + 1} \right)}}{{secx + 1 - tanx}}\]
cancelling the like terms we get,
\[secx + tanx\]
now write all the trigonometric ratios in terms of $ \cos x $ and \[\;sinx\]
we get,
\[\dfrac{1}{{cosx}} + \dfrac{{sinx}}{{cosx}} = \dfrac{{1 + sinx}}{{cosx}}\]
Hence \[LHS = RHS\]
Note: Instead of dividing each term of numerator and denominator by $ \cos x $ we can also divide by \[\;sinx\] each term of numerator and denominator we will get the same result. Students can take this as an example to try out the other method.
Complete step-by-step answer:
LHS is given as
\[\dfrac{{1 + cosx + sinx}}{{1 + cosx - sinx}}\]
Dividing each terms of numerators and denominator by \[\;cosx\]
We get,
\[\dfrac{{secx + 1 + tanx}}{{secx + 1 - tanx}}\]
now write \[1 = se{c^2}x - ta{n^2}x\] in the above equation
\[\dfrac{{secx + tanx + se{c^2}x - ta{n^2}x}}{{secx + 1 - tanx}}\]
now break \[se{c^2}x - ta{n^2}x\] into \[\left( {secx - tanx} \right)\left( {secx + tanx} \right)\]
\[\dfrac{{secx + tanx + \left( {secx - tanx} \right)\left( {secx + tanx} \right)}}{{secx + 1 - tanx}}\]
now take \[secx + tanx\] as common
\[\dfrac{{secx + tanx\left( {secx - tanx + 1} \right)}}{{secx + 1 - tanx}}\]
cancelling the like terms we get,
\[secx + tanx\]
now write all the trigonometric ratios in terms of $ \cos x $ and \[\;sinx\]
we get,
\[\dfrac{1}{{cosx}} + \dfrac{{sinx}}{{cosx}} = \dfrac{{1 + sinx}}{{cosx}}\]
Hence \[LHS = RHS\]
Note: Instead of dividing each term of numerator and denominator by $ \cos x $ we can also divide by \[\;sinx\] each term of numerator and denominator we will get the same result. Students can take this as an example to try out the other method.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

