
What is the power factor of LCR circuits at resonance?
Answer
554.7k+ views
Hint : Power factor is the ratio of active power and apparent power. Reactive power of LCR combination is the difference between capacitive and inductive power. At resonance, capacitive and inductive reactances are equal.
Formula Used: The formulae used in the solution are given here.
$\Rightarrow P.F. = \dfrac{R}{Z} $ where $ P.F. $ is the power factor, $ R $ is the reactance and $ Z $ is the total impedance.
$\Rightarrow Z = \sqrt {{R^2} + \left( {{X_C} - {X_L}} \right)} $ where , $ R $ is the reactance and $ Z $ is the total impedance and $ {X_C} $ is the capacitive reactance and $ {X_L} $ is the inductive reactance.
$\Rightarrow {X_C} = \dfrac{1}{{\omega C}} $ where $ C $ is the capacitance and $ {X_L} = \omega L $ where $ L $ is the inductance.
$\Rightarrow \omega = 2\pi f $ where $ f $ is the frequency of AC source.
Complete step by step answer
Power factor is also the ratio of resistance of LCR circuit to its impedance. The power factor of an LCR circuit is the ratio of the resistance to the total impedance of the circuit. The total impedance consists of the magnitude of the phasor sum of the resistance, the capacitive reactance and the inductive reactance.
The power factor is a measure of the fraction of total power that is being used up or dissipated by a load resistor. Since, capacitors and inductors do not dissipate power but keep on exchanging them between the source and themselves, they do not utilize the power. The higher the power factor, the better it is for energy efficiency as a greater fraction of the power is available for utilization.
We know that, $ P.F. = \dfrac{R}{Z} $ where $ P.F. $ is the power factor, $ R $ is the reactance and $ Z $ is the total impedance.
$\Rightarrow Z = \sqrt {{R^2} + \left( {{X_C} - {X_L}} \right)} $ where $ R $ is the reactance and $ Z $ is the total impedance and $ {X_C} $ is the capacitive reactance and $ {X_L} $ is the inductive reactance.
At resonance, $ {X_C} = {X_L} $ .
We know, $ {X_C} = \dfrac{1}{{\omega C}} $ where $ C $ is the capacitance and $ {X_L} = \omega L $ where $ L $ is the inductance.
$\Rightarrow \omega = 2\pi f $ where $ f $ is the frequency of AC source.
$\Rightarrow \dfrac{1}{{\omega C}} = \omega L $
$ \Rightarrow \omega = \sqrt {\dfrac{1}{{LC}}} $
Since, $ {X_C} = {X_L} $ , thus $ {X_C} - {X_L} = 0 $ .
Total impedance $ Z $ is thus, $ Z = \sqrt {{R^2} + 0} $
$ \Rightarrow Z = R. $
To find the power factor,
$\Rightarrow P.F. = \dfrac{R}{Z} = 1 $ .
$ \therefore $ The power factor at resonance is 1.
Note
The voltage across the inductor and capacitor cancel each other. The total impedance of the circuit is only due to the resistor. The phase angle between voltage and current is zero.
$\Rightarrow \cos \varphi = \dfrac{R}{Z} = \dfrac{R}{R} = 1. $ The power factor is unity.
Formula Used: The formulae used in the solution are given here.
$\Rightarrow P.F. = \dfrac{R}{Z} $ where $ P.F. $ is the power factor, $ R $ is the reactance and $ Z $ is the total impedance.
$\Rightarrow Z = \sqrt {{R^2} + \left( {{X_C} - {X_L}} \right)} $ where , $ R $ is the reactance and $ Z $ is the total impedance and $ {X_C} $ is the capacitive reactance and $ {X_L} $ is the inductive reactance.
$\Rightarrow {X_C} = \dfrac{1}{{\omega C}} $ where $ C $ is the capacitance and $ {X_L} = \omega L $ where $ L $ is the inductance.
$\Rightarrow \omega = 2\pi f $ where $ f $ is the frequency of AC source.
Complete step by step answer
Power factor is also the ratio of resistance of LCR circuit to its impedance. The power factor of an LCR circuit is the ratio of the resistance to the total impedance of the circuit. The total impedance consists of the magnitude of the phasor sum of the resistance, the capacitive reactance and the inductive reactance.
The power factor is a measure of the fraction of total power that is being used up or dissipated by a load resistor. Since, capacitors and inductors do not dissipate power but keep on exchanging them between the source and themselves, they do not utilize the power. The higher the power factor, the better it is for energy efficiency as a greater fraction of the power is available for utilization.
We know that, $ P.F. = \dfrac{R}{Z} $ where $ P.F. $ is the power factor, $ R $ is the reactance and $ Z $ is the total impedance.
$\Rightarrow Z = \sqrt {{R^2} + \left( {{X_C} - {X_L}} \right)} $ where $ R $ is the reactance and $ Z $ is the total impedance and $ {X_C} $ is the capacitive reactance and $ {X_L} $ is the inductive reactance.
At resonance, $ {X_C} = {X_L} $ .
We know, $ {X_C} = \dfrac{1}{{\omega C}} $ where $ C $ is the capacitance and $ {X_L} = \omega L $ where $ L $ is the inductance.
$\Rightarrow \omega = 2\pi f $ where $ f $ is the frequency of AC source.
$\Rightarrow \dfrac{1}{{\omega C}} = \omega L $
$ \Rightarrow \omega = \sqrt {\dfrac{1}{{LC}}} $
Since, $ {X_C} = {X_L} $ , thus $ {X_C} - {X_L} = 0 $ .
Total impedance $ Z $ is thus, $ Z = \sqrt {{R^2} + 0} $
$ \Rightarrow Z = R. $
To find the power factor,
$\Rightarrow P.F. = \dfrac{R}{Z} = 1 $ .
$ \therefore $ The power factor at resonance is 1.
Note
The voltage across the inductor and capacitor cancel each other. The total impedance of the circuit is only due to the resistor. The phase angle between voltage and current is zero.
$\Rightarrow \cos \varphi = \dfrac{R}{Z} = \dfrac{R}{R} = 1. $ The power factor is unity.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

