
Power dissipation is maximum in
A. Pure capacitive circuit
B. Pure inductive circuit
C. Pure resistive circuit
D. None of these
Answer
509.7k+ views
Hint:We are going to calculate the average power dissipated in each of the circuits(Pure inductive, pure capacitive, pure resistive). To calculate that, let’s understand the formula first.
Formula used:
Average Power dissipated over one complete cycle in an A.C circuit is given by,
\[{{P}_{avg}}={{V}_{r.m.s}}{{I}_{r.m.s}}\cos \phi \]
Where \[\phi \] is the phase difference between the current and the voltage, \[{{V}_{r.m.s}}\] is the root mean square value of the voltage and \[{{I}_{r.m.s}}\] is the root mean square value of the current.
Complete step by step answer:
In the pure capacitive circuit, the current flowing through the capacitor leads the voltage by an angle of \[{{90}^{\circ }}\], which means,
\[\phi ={{90}^{\circ }} \\
\Rightarrow \cos \phi =\cos {{90}^{\circ }}=0 \]
Therefore, power dissipated in pure capacitive circuit is \[{{V}_{r.m.s}}\times {{I}_{r.m.s}}\times 0=0\]
In a pure inductive circuit, the current in the pure inductive A.C circuit lags the voltage by an angle of \[{{90}^{\circ }}\], which means,
\[\phi ={{90}^{\circ }} \\
\Rightarrow \cos \phi =\cos {{90}^{\circ }}=0 \]
Therefore, power dissipated in pure inductive circuit is also \[{{V}_{r.m.s}}\times {{I}_{r.m.s}}\times 0=0\]
In a pure resistive circuit, the phase angle between current and voltage is\[{{0}^{\circ }}\], which means, they are in phase with each other (\[\phi ={{0}^{\circ }}\]). And maximum value of \[\cos \phi =1\] which further suggests that maximum power dissipation occurs in a pure resistive circuit.
\[\therefore \cos \phi =\cos {{0}^{\circ }}=1\]
Therefore, power dissipated in pure resistive circuit is also \[{{V}_{r.m.s}}\times {{I}_{r.m.s}}\times 1={{V}_{r.m.s}}\times {{I}_{r.m.s}}\].
Hence, the correct answer is option C.
Note: In A.C, we define, \[{{V}_{r.m.s}}\] and \[{{I}_{r.m.s}}\] for convenience to calculate power and they both are constant all the time. In A.C circuits, voltage and current values oscillates which makes the instantaneous power oscillate as well and to give power a one value, we use average value of power and that’s what we used in the question. Same goes the explanation for the usage of \[{{V}_{r.m.s}}\] and \[{{I}_{r.m.s}}\].
Formula used:
Average Power dissipated over one complete cycle in an A.C circuit is given by,
\[{{P}_{avg}}={{V}_{r.m.s}}{{I}_{r.m.s}}\cos \phi \]
Where \[\phi \] is the phase difference between the current and the voltage, \[{{V}_{r.m.s}}\] is the root mean square value of the voltage and \[{{I}_{r.m.s}}\] is the root mean square value of the current.
Complete step by step answer:
In the pure capacitive circuit, the current flowing through the capacitor leads the voltage by an angle of \[{{90}^{\circ }}\], which means,
\[\phi ={{90}^{\circ }} \\
\Rightarrow \cos \phi =\cos {{90}^{\circ }}=0 \]
Therefore, power dissipated in pure capacitive circuit is \[{{V}_{r.m.s}}\times {{I}_{r.m.s}}\times 0=0\]
In a pure inductive circuit, the current in the pure inductive A.C circuit lags the voltage by an angle of \[{{90}^{\circ }}\], which means,
\[\phi ={{90}^{\circ }} \\
\Rightarrow \cos \phi =\cos {{90}^{\circ }}=0 \]
Therefore, power dissipated in pure inductive circuit is also \[{{V}_{r.m.s}}\times {{I}_{r.m.s}}\times 0=0\]
In a pure resistive circuit, the phase angle between current and voltage is\[{{0}^{\circ }}\], which means, they are in phase with each other (\[\phi ={{0}^{\circ }}\]). And maximum value of \[\cos \phi =1\] which further suggests that maximum power dissipation occurs in a pure resistive circuit.
\[\therefore \cos \phi =\cos {{0}^{\circ }}=1\]
Therefore, power dissipated in pure resistive circuit is also \[{{V}_{r.m.s}}\times {{I}_{r.m.s}}\times 1={{V}_{r.m.s}}\times {{I}_{r.m.s}}\].
Hence, the correct answer is option C.
Note: In A.C, we define, \[{{V}_{r.m.s}}\] and \[{{I}_{r.m.s}}\] for convenience to calculate power and they both are constant all the time. In A.C circuits, voltage and current values oscillates which makes the instantaneous power oscillate as well and to give power a one value, we use average value of power and that’s what we used in the question. Same goes the explanation for the usage of \[{{V}_{r.m.s}}\] and \[{{I}_{r.m.s}}\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

