
How do you perform the operation in trigonometric form \[\left( \dfrac{5}{3}\left( \cos \left( 140 \right)+i\sin \left( 140 \right) \right) \right)\left( \dfrac{2}{3}\left( \cos \left( 60 \right)+i\sin \left( 60 \right) \right) \right)\]?
Answer
536.1k+ views
Hint: This question is from the topic of algebra. In this question, we will find out the solved value of the term given in the question. In solving this question, we will understand about the term iota. After that, we will understand about the foil method formula. After solving the given term, we will see some trigonometric formulas and use them to solve the further question and get our answer.
Complete step-by-step answer:
Let us solve this question.
In this question, we have asked to solve the term \[\left( \dfrac{5}{3}\left( \cos \left( 140 \right)+i\sin \left( 140 \right) \right) \right)\left( \dfrac{2}{3}\left( \cos \left( 60 \right)+i\sin \left( 60 \right) \right) \right)\].
Let us first understand about the term iota. The term iota is an imaginary number. It is square root of negative of 1. We can write iota as
\[i=\sqrt{-1}\]
\[{{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1\]
\[{{i}^{3}}=-i\]
\[{{i}^{4}}=1\]
Now, let us know about the foil method. The foil method says that \[\left( a+b \right)\left( c+d \right)\] can also be written as \[ac+ad+bc+bd\]. Or, we can write the foil method formula as
\[\left( a+b \right)\left( c+d \right)=ac+ad+bc+bd\]
Now, let us solve the term \[\left( \dfrac{5}{3}\left( \cos \left( 140 \right)+i\sin \left( 140 \right) \right) \right)\left( \dfrac{2}{3}\left( \cos \left( 60 \right)+i\sin \left( 60 \right) \right) \right)\]. This term can also be written as
\[\Rightarrow \dfrac{5}{3}\times \dfrac{2}{3}\left( \cos \left( 140 \right)+i\sin \left( 140 \right) \right)\left( \cos \left( 60 \right)+i\sin \left( 60 \right) \right)\]
The above can also be written as
\[\Rightarrow \dfrac{10}{9}\left( \cos \left( 140 \right)+i\sin \left( 140 \right) \right)\left( \cos \left( 60 \right)+i\sin \left( 60 \right) \right)\]
So, using foil method formula, we can write the above term as
\[\Rightarrow \dfrac{10}{9}\left( \cos \left( 140 \right)\cos \left( 60 \right)+\cos \left( 140 \right)i\sin \left( 60 \right)+i\sin \left( 140 \right)\cos \left( 60 \right)+i\sin \left( 140 \right)i\sin \left( 60 \right) \right)\]
The above can also be written as
\[\Rightarrow \dfrac{10}{9}\left( \cos \left( 140 \right)\cos \left( 60 \right)+i\cos \left( 140 \right)\sin \left( 60 \right)+i\sin \left( 140 \right)\cos \left( 60 \right)+{{i}^{2}}\sin \left( 140 \right)\sin \left( 60 \right) \right)\]
Using the formula: \[{{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1\], we can write the above as
\[\Rightarrow \dfrac{10}{9}\left( \cos \left( 140 \right)\cos \left( 60 \right)+i\cos \left( 140 \right)\sin \left( 60 \right)+i\sin \left( 140 \right)\cos \left( 60 \right)-\sin \left( 140 \right)\sin \left( 60 \right) \right)\]
\[\Rightarrow \dfrac{10}{9}\left( \left[ \cos \left( 140 \right)\cos \left( 60 \right)-\sin \left( 140 \right)\sin \left( 60 \right) \right]+i\left[ \cos \left( 140 \right)\sin \left( 60 \right)+\sin \left( 140 \right)\cos \left( 60 \right) \right] \right)\]
Using the formulas: \[\cos x\cos y-\sin x\sin y=\cos \left( x+y \right)\] and \[\sin x\cos y+\cos x\sin y=\sin \left( x+y \right)\], we can write the above term as
\[\Rightarrow \dfrac{10}{9}\left( \left[ \cos \left( 140+60 \right) \right]+i\left[ \sin \left( 60+140 \right) \right] \right)\]
The above term can also be written as
\[\Rightarrow \dfrac{10}{9}\left( \cos \left( 200 \right)+i\sin \left( 200 \right) \right)\]
Now, we have performed the operation in trigonometric form to solve the term \[\left( \dfrac{5}{3}\left( \cos \left( 140 \right)+i\sin \left( 140 \right) \right) \right)\left( \dfrac{2}{3}\left( \cos \left( 60 \right)+i\sin \left( 60 \right) \right) \right)\]. The solved term is \[\dfrac{10}{9}\left( \cos \left( 200 \right)+i\sin \left( 200 \right) \right)\].
Note: We should have a better knowledge in the topic of trigonometry to solve this type of question easily. Remember that all the terms inside sin and cos are in degrees. Remember the following formulas to solve this type of question easily:
Complete step-by-step answer:
Let us solve this question.
In this question, we have asked to solve the term \[\left( \dfrac{5}{3}\left( \cos \left( 140 \right)+i\sin \left( 140 \right) \right) \right)\left( \dfrac{2}{3}\left( \cos \left( 60 \right)+i\sin \left( 60 \right) \right) \right)\].
Let us first understand about the term iota. The term iota is an imaginary number. It is square root of negative of 1. We can write iota as
\[i=\sqrt{-1}\]
\[{{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1\]
\[{{i}^{3}}=-i\]
\[{{i}^{4}}=1\]
Now, let us know about the foil method. The foil method says that \[\left( a+b \right)\left( c+d \right)\] can also be written as \[ac+ad+bc+bd\]. Or, we can write the foil method formula as
\[\left( a+b \right)\left( c+d \right)=ac+ad+bc+bd\]
Now, let us solve the term \[\left( \dfrac{5}{3}\left( \cos \left( 140 \right)+i\sin \left( 140 \right) \right) \right)\left( \dfrac{2}{3}\left( \cos \left( 60 \right)+i\sin \left( 60 \right) \right) \right)\]. This term can also be written as
\[\Rightarrow \dfrac{5}{3}\times \dfrac{2}{3}\left( \cos \left( 140 \right)+i\sin \left( 140 \right) \right)\left( \cos \left( 60 \right)+i\sin \left( 60 \right) \right)\]
The above can also be written as
\[\Rightarrow \dfrac{10}{9}\left( \cos \left( 140 \right)+i\sin \left( 140 \right) \right)\left( \cos \left( 60 \right)+i\sin \left( 60 \right) \right)\]
So, using foil method formula, we can write the above term as
\[\Rightarrow \dfrac{10}{9}\left( \cos \left( 140 \right)\cos \left( 60 \right)+\cos \left( 140 \right)i\sin \left( 60 \right)+i\sin \left( 140 \right)\cos \left( 60 \right)+i\sin \left( 140 \right)i\sin \left( 60 \right) \right)\]
The above can also be written as
\[\Rightarrow \dfrac{10}{9}\left( \cos \left( 140 \right)\cos \left( 60 \right)+i\cos \left( 140 \right)\sin \left( 60 \right)+i\sin \left( 140 \right)\cos \left( 60 \right)+{{i}^{2}}\sin \left( 140 \right)\sin \left( 60 \right) \right)\]
Using the formula: \[{{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1\], we can write the above as
\[\Rightarrow \dfrac{10}{9}\left( \cos \left( 140 \right)\cos \left( 60 \right)+i\cos \left( 140 \right)\sin \left( 60 \right)+i\sin \left( 140 \right)\cos \left( 60 \right)-\sin \left( 140 \right)\sin \left( 60 \right) \right)\]
\[\Rightarrow \dfrac{10}{9}\left( \left[ \cos \left( 140 \right)\cos \left( 60 \right)-\sin \left( 140 \right)\sin \left( 60 \right) \right]+i\left[ \cos \left( 140 \right)\sin \left( 60 \right)+\sin \left( 140 \right)\cos \left( 60 \right) \right] \right)\]
Using the formulas: \[\cos x\cos y-\sin x\sin y=\cos \left( x+y \right)\] and \[\sin x\cos y+\cos x\sin y=\sin \left( x+y \right)\], we can write the above term as
\[\Rightarrow \dfrac{10}{9}\left( \left[ \cos \left( 140+60 \right) \right]+i\left[ \sin \left( 60+140 \right) \right] \right)\]
The above term can also be written as
\[\Rightarrow \dfrac{10}{9}\left( \cos \left( 200 \right)+i\sin \left( 200 \right) \right)\]
Now, we have performed the operation in trigonometric form to solve the term \[\left( \dfrac{5}{3}\left( \cos \left( 140 \right)+i\sin \left( 140 \right) \right) \right)\left( \dfrac{2}{3}\left( \cos \left( 60 \right)+i\sin \left( 60 \right) \right) \right)\]. The solved term is \[\dfrac{10}{9}\left( \cos \left( 200 \right)+i\sin \left( 200 \right) \right)\].
Note: We should have a better knowledge in the topic of trigonometry to solve this type of question easily. Remember that all the terms inside sin and cos are in degrees. Remember the following formulas to solve this type of question easily:
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

