
Packing fraction of simple cubic cell is:
A. $\dfrac{{{\pi }}}{{\text{2}}}$
B. $\dfrac{{{\pi }}}{{\text{6}}}$
C. $\dfrac{{{{3\pi }}}}{{\text{6}}}$
D. $\dfrac{{{\pi }}}{{{\text{2}}\sqrt {\text{2}} }}$
Answer
558.6k+ views
Hint: In a simple cubic cell, the radius is half of diagonal length. The diagonal edge length of the simple cubic cell is a. By this, we will determine the volume of the cube. Then divide the volume of two spheres by the volume of the cube to determine the packing efficiency.
Formula used: ${\text{packing}}\,{\text{fraction}}\,{\text{ = }}\,\dfrac{{{\text{volume}}\,{\text{occupied}}\,{\text{by}}\,{\text{sphere}}\,{\text{in}}\,{\text{unit}}\,{\text{cell}}}}{{\,{\text{total}}\,{\text{volume}}\,{\text{of}}\,{\text{unit}}\,{\text{cell}}}}$
Complete step-by-step solution
The total space occupied by the particles is defined as the packing fraction. In a simple cubic cell only one atom is present in the lattice, so volume occupied by the unit cell will be only by one atom.
The formula to determine packing efficiency is as follows:
${\text{packing}}\,{\text{fraction}}\,{\text{ = }}\,\dfrac{{{\text{volume}}\,{\text{occupied}}\,{\text{by}}\,{\text{sphere}}\,{\text{in}}\,{\text{unit}}\,{\text{cell}}}}{{\,{\text{total}}\,{\text{volume}}\,{\text{of}}\,{\text{unit}}\,{\text{cell}}}}$
The volume of the sphere is, $\dfrac{{\text{4}}}{{\text{3}}}{{\pi }}{{\text{r}}^3}$
The formula of the volume of the cube is, ${{\text{a}}^{\text{3}}}$
So, the packing fraction is,
${\text{packing}}\,{\text{fraction}}\,{\text{ = }}\,\dfrac{{\dfrac{{\text{4}}}{{\text{3}}}{{\pi }}{{\text{r}}^{\text{3}}}}}{{\,{{\text{a}}^{\text{3}}}}}$
The volume of the simple cubic cell ${{\text{a}}^3}$ is as follows:
In the simple cubic cell, the relation between atomic radius edge length is as follows:
${\text{r}}\,{\text{ = }}\dfrac{{\text{a}}}{{\text{2}}}$
Where,
${\text{r}}\,$is the atomic radius.
${\text{a}}$ is the edge length of the unit cell.
Rearrange for edge length, ${\text{a}}\,{\text{ = 2r}}$
So, the volume simple cubic cell is, ${{\text{a}}^{\text{3}}}\,{\text{ = }}{\left( {{\text{2r}}} \right)^{\text{3}}}$
Substitute ${\left( {{\text{2r}}} \right)^{\text{3}}}$for ${{\text{a}}^{\text{3}}}$ in packing fraction formula.
${\text{packing}}\,{\text{fraction}}\,{\text{ = }}\,\dfrac{{\dfrac{{\text{4}}}{{{3}}}{{\pi }}{{\text{r}}^{\text{3}}}}}{{\,{{\left( {{\text{2r}}} \right)}^{\text{3}}}}}$
\[{\text{Packing}}\,{\text{fraction}}\,{\text{ = }}\,\dfrac{4}{{\text{3}}}{{\pi }}{{\text{r}}^{\text{3}}}{{ \times }}\dfrac{{{\text{1}}\,}}{{{\text{8}}{{\text{r}}^{\text{3}}}}}\]
\[{\text{Packing}}\,{\text{fraction}}\,{\text{ = }}\,\dfrac{{{\pi }}}{6}\]
So, the packing fraction of a simple cubic cell is\[\dfrac{{{\pi }}}{6}\].
Therefore, option (B) \[\dfrac{{{\pi }}}{6}\] is correct.
Note:\[\dfrac{{{\pi }}}{6}\]is equal to $0.56$ so, the packing efficiency of a Simple cubic cell is $56$%.
The total volume of a cubic unit cell is\[100\]% out of which$56$% is occupied so, the free space is,\[100\, - \,52 = \,48\].The packing efficiency of the face-centered cubic unit cell which is found in hcp and ccp is\[78\]% and the percentage of free space is\[22\]%. The maximum packing efficiency is of the face-centered cubic unit cell. In the face-centered cubic lattice, the radius is one-fourth of the diagonal length. The diagonal edge length of the face-centered cubic unit cell is$a\sqrt 2 $. In a simple cubic unit cell, the edge length is double the radius of the unit cell.
Formula used: ${\text{packing}}\,{\text{fraction}}\,{\text{ = }}\,\dfrac{{{\text{volume}}\,{\text{occupied}}\,{\text{by}}\,{\text{sphere}}\,{\text{in}}\,{\text{unit}}\,{\text{cell}}}}{{\,{\text{total}}\,{\text{volume}}\,{\text{of}}\,{\text{unit}}\,{\text{cell}}}}$
Complete step-by-step solution
The total space occupied by the particles is defined as the packing fraction. In a simple cubic cell only one atom is present in the lattice, so volume occupied by the unit cell will be only by one atom.
The formula to determine packing efficiency is as follows:
${\text{packing}}\,{\text{fraction}}\,{\text{ = }}\,\dfrac{{{\text{volume}}\,{\text{occupied}}\,{\text{by}}\,{\text{sphere}}\,{\text{in}}\,{\text{unit}}\,{\text{cell}}}}{{\,{\text{total}}\,{\text{volume}}\,{\text{of}}\,{\text{unit}}\,{\text{cell}}}}$
The volume of the sphere is, $\dfrac{{\text{4}}}{{\text{3}}}{{\pi }}{{\text{r}}^3}$
The formula of the volume of the cube is, ${{\text{a}}^{\text{3}}}$
So, the packing fraction is,
${\text{packing}}\,{\text{fraction}}\,{\text{ = }}\,\dfrac{{\dfrac{{\text{4}}}{{\text{3}}}{{\pi }}{{\text{r}}^{\text{3}}}}}{{\,{{\text{a}}^{\text{3}}}}}$
The volume of the simple cubic cell ${{\text{a}}^3}$ is as follows:
In the simple cubic cell, the relation between atomic radius edge length is as follows:
${\text{r}}\,{\text{ = }}\dfrac{{\text{a}}}{{\text{2}}}$
Where,
${\text{r}}\,$is the atomic radius.
${\text{a}}$ is the edge length of the unit cell.
Rearrange for edge length, ${\text{a}}\,{\text{ = 2r}}$
So, the volume simple cubic cell is, ${{\text{a}}^{\text{3}}}\,{\text{ = }}{\left( {{\text{2r}}} \right)^{\text{3}}}$
Substitute ${\left( {{\text{2r}}} \right)^{\text{3}}}$for ${{\text{a}}^{\text{3}}}$ in packing fraction formula.
${\text{packing}}\,{\text{fraction}}\,{\text{ = }}\,\dfrac{{\dfrac{{\text{4}}}{{{3}}}{{\pi }}{{\text{r}}^{\text{3}}}}}{{\,{{\left( {{\text{2r}}} \right)}^{\text{3}}}}}$
\[{\text{Packing}}\,{\text{fraction}}\,{\text{ = }}\,\dfrac{4}{{\text{3}}}{{\pi }}{{\text{r}}^{\text{3}}}{{ \times }}\dfrac{{{\text{1}}\,}}{{{\text{8}}{{\text{r}}^{\text{3}}}}}\]
\[{\text{Packing}}\,{\text{fraction}}\,{\text{ = }}\,\dfrac{{{\pi }}}{6}\]
So, the packing fraction of a simple cubic cell is\[\dfrac{{{\pi }}}{6}\].
Therefore, option (B) \[\dfrac{{{\pi }}}{6}\] is correct.
Note:\[\dfrac{{{\pi }}}{6}\]is equal to $0.56$ so, the packing efficiency of a Simple cubic cell is $56$%.
The total volume of a cubic unit cell is\[100\]% out of which$56$% is occupied so, the free space is,\[100\, - \,52 = \,48\].The packing efficiency of the face-centered cubic unit cell which is found in hcp and ccp is\[78\]% and the percentage of free space is\[22\]%. The maximum packing efficiency is of the face-centered cubic unit cell. In the face-centered cubic lattice, the radius is one-fourth of the diagonal length. The diagonal edge length of the face-centered cubic unit cell is$a\sqrt 2 $. In a simple cubic unit cell, the edge length is double the radius of the unit cell.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

