Answer
Verified
417.3k+ views
Hint: Here, we will assume the required number to be some variable. We will first find the one fifth of the number and then subtract 4 from it and then equate it to 3 to get a linear equation. We will solve the equation further to get the required answer. A linear equation is an equation which has the highest degree of 1 and has only one solution.
Complete step-by-step solution:
Let the unknown number be \[x\].
According to the question, one fifth of \[x\] minus four gives three.
This means that we first have to take the one fifth of the unknown number, which in turn means that we have to multiply it by \[\dfrac{1}{5}\] or divide by \[5\].
On dividing \[x\] by five, we get \[\dfrac{x}{5}\].
Now, four has to be subtracted from the one fifth of the unknown number. On subtracting four from \[\dfrac{x}{5}\], we get \[\left( {\dfrac{x}{5} - 4} \right)\].
We will now equate the above expression to 3, so that we can write the mathematical equation as:
\[\dfrac{x}{5} - 4 = 3\]
Adding \[4\] on both the sides, we get
\[ \Rightarrow \dfrac{x}{5} = 7\]
On multiplying both the sides by \[5\], we get
\[ \Rightarrow x = 35\]
Therefore, the value of the required number is 35.
Note:
While converting a statement into a mathematical expression, we have to take proper care of the BODMAS rule. We might misinterpret the given statement as one-fifth of the number obtained by subtracting four from the unknown number is equal to three, and generate the mathematical equation as \[\dfrac{{x - 4}}{5} = 3\]. Here comes the significance of the BODMAS rule according to which the division must be performed before the subtraction, and hence the equation is \[\dfrac{x}{5} - 4 = 3\].
Complete step-by-step solution:
Let the unknown number be \[x\].
According to the question, one fifth of \[x\] minus four gives three.
This means that we first have to take the one fifth of the unknown number, which in turn means that we have to multiply it by \[\dfrac{1}{5}\] or divide by \[5\].
On dividing \[x\] by five, we get \[\dfrac{x}{5}\].
Now, four has to be subtracted from the one fifth of the unknown number. On subtracting four from \[\dfrac{x}{5}\], we get \[\left( {\dfrac{x}{5} - 4} \right)\].
We will now equate the above expression to 3, so that we can write the mathematical equation as:
\[\dfrac{x}{5} - 4 = 3\]
Adding \[4\] on both the sides, we get
\[ \Rightarrow \dfrac{x}{5} = 7\]
On multiplying both the sides by \[5\], we get
\[ \Rightarrow x = 35\]
Therefore, the value of the required number is 35.
Note:
While converting a statement into a mathematical expression, we have to take proper care of the BODMAS rule. We might misinterpret the given statement as one-fifth of the number obtained by subtracting four from the unknown number is equal to three, and generate the mathematical equation as \[\dfrac{{x - 4}}{5} = 3\]. Here comes the significance of the BODMAS rule according to which the division must be performed before the subtraction, and hence the equation is \[\dfrac{x}{5} - 4 = 3\].
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE