
On the set of all real numbers, define a relation $R=\left\{ \left( a,b \right):a < b \right\}$. Show that R is (i) not reflexive (ii) transitive (iii) not symmetric.
Answer
538.8k+ views
Hint: To show that R is reflexive, find an example such that $\left( a,a \right)\in R$ for $a\in S$ , To show that R is transitive , find an example such that $\left( a,b \right)\in R$ and $\left( b,c \right)\in R$ then $\left( a,c \right)\in R$ for $a,b,c\in S$.To show that R is not symmetric, find an example such that $\left( a,b \right)\in R$ but $\left( b,a \right)\notin R$ for $a,b\in S$ .
Complete step by step answer:
Let ‘A’ be a set then Reflexivity, Symmetry and transitivity of a relation on set ‘A’ is defined as follows:
Reflexive relation: - A relation R on a set ‘A’ is said to be reflexive if every element of A is related to itself i.e. for every element say (a) in set A, $\left( a,a \right)\in R$ .
Thus, R on a set ‘A’ is not reflexive if there exists an element $a\in A$ such that $\left( a,a \right)\notin R$.
Symmetric Relation: - A relation R on a set ‘A’ is said to be symmetric relation if $\left( a,b \right)\in R$ then $\left( b,a \right)$must be belong to R. i.e. $\left( a,b \right)\in R\Rightarrow \left( b,a \right)\in R$ For all $a,b\in A$.
Transitive relation:- A relation R on ‘A’ is said to be a transitive relation If $\left( a,b \right)\in R$ and $\left( b,c \right)\in R$ then $\left( a,c \right)\in R$.
I.e. $\left( a,b \right)\in R$and $\left( b,c \right)\in R\Rightarrow \left( a,c \right)\in R$.
Given relation $R=\left\{ \left( a,b \right):a < b \right\}$
$\therefore R=\left\{ \left( 1,2 \right),\left( 2,3 \right),\left( 2,4 \right),\left( 3,8 \right),\left( 1,3 \right),\left( 1,8 \right),\left( 1,4 \right),\left( 2,8 \right),.......... \right\}$ .
Check reflexivity: If $\left( a,a \right)\in R$ , foe $a\in S$ , then R is reflexive. Since, $R=\left\{ \left( a,b \right):a < b \right\}$.
That means. $\left( a,a \right)\notin R$ , because a number is equal to itself but doesn’t belong to set R.
Therefore, R is not reflexive.
Check symmetricity: If \[\left( a,b \right)\in R\] for $a.b\in S$ and $\left( b,a \right)\notin R$ , Then R is not symmetric.
Since $R=\left\{ \left( a,b \right):a < b \right\}$
If $\left( a.b \right)\in R$ , that means $\left( a < b \right)$ i.e. $\left( b > a \right)$ Therefore, $\left( b,a \right)\notin R$ .
It is very obvious that if $\left( a,b \right)\in R\Rightarrow a < b$ $\Rightarrow \text{ a is less than or equal to b }\Rightarrow \text{ b is not less than or equal to a}$ .
From set R, we can see that $\left( 1,2 \right)\in R$ But $\left( 2,1 \right)\notin R$
$\left( 2,3 \right)\in R,\text{ But }\left( 3,2 \right)\notin R$ .
Therefore, R is not symmetric.
Check transitivity: If \[\left( a,b \right)\in R\] and $\left( b,c \right)\in R$ for $a,b,c\in S$ and $\left( a,c \right)\in R$ , then R is transitive.
From the set R, we can clearly see that –
$\begin{align}
& \left( 1,2 \right)\in R\text{ and }\left( 2,3 \right)\in R\text{ then }\left( 1,3 \right)\in R \\
& \left( 1,2 \right)\in R\text{ and }\left( 2,4 \right)\in R\text{ then }\left( 1,4 \right)\in R \\
& \left( 1,3 \right)\in R\text{ and }\left( 3,8 \right)\in R\text{ then }\left( 1,8 \right)\in R \\
\end{align}$
…………………………………….. and so on.
We can also notice that if $\left( a,b \right)\in R\Rightarrow a < b$…..(1)
And $\left( b,c \right)\in R\Rightarrow b < c$ ……………………. (2)
From (1) and (2) we can conclude that $a < c$ .
Therefore, R is transitive.
Hence we conclude that relation R is transitive but not reflexive and symmetric.
Note: To prove that R is transitive, be careful that if $\left( a,b \right)\in R$ and $\left( b,c \right)\in R$ then $\left( a,c \right)\in R$ . If there is no pair such that $\left( a,b \right)\in R$ and $\left( b,c \right)\in R$. Then we don’t need to check, R will always be transitive in this case.
Complete step by step answer:
Let ‘A’ be a set then Reflexivity, Symmetry and transitivity of a relation on set ‘A’ is defined as follows:
Reflexive relation: - A relation R on a set ‘A’ is said to be reflexive if every element of A is related to itself i.e. for every element say (a) in set A, $\left( a,a \right)\in R$ .
Thus, R on a set ‘A’ is not reflexive if there exists an element $a\in A$ such that $\left( a,a \right)\notin R$.
Symmetric Relation: - A relation R on a set ‘A’ is said to be symmetric relation if $\left( a,b \right)\in R$ then $\left( b,a \right)$must be belong to R. i.e. $\left( a,b \right)\in R\Rightarrow \left( b,a \right)\in R$ For all $a,b\in A$.
Transitive relation:- A relation R on ‘A’ is said to be a transitive relation If $\left( a,b \right)\in R$ and $\left( b,c \right)\in R$ then $\left( a,c \right)\in R$.
I.e. $\left( a,b \right)\in R$and $\left( b,c \right)\in R\Rightarrow \left( a,c \right)\in R$.
Given relation $R=\left\{ \left( a,b \right):a < b \right\}$
$\therefore R=\left\{ \left( 1,2 \right),\left( 2,3 \right),\left( 2,4 \right),\left( 3,8 \right),\left( 1,3 \right),\left( 1,8 \right),\left( 1,4 \right),\left( 2,8 \right),.......... \right\}$ .
Check reflexivity: If $\left( a,a \right)\in R$ , foe $a\in S$ , then R is reflexive. Since, $R=\left\{ \left( a,b \right):a < b \right\}$.
That means. $\left( a,a \right)\notin R$ , because a number is equal to itself but doesn’t belong to set R.
Therefore, R is not reflexive.
Check symmetricity: If \[\left( a,b \right)\in R\] for $a.b\in S$ and $\left( b,a \right)\notin R$ , Then R is not symmetric.
Since $R=\left\{ \left( a,b \right):a < b \right\}$
If $\left( a.b \right)\in R$ , that means $\left( a < b \right)$ i.e. $\left( b > a \right)$ Therefore, $\left( b,a \right)\notin R$ .
It is very obvious that if $\left( a,b \right)\in R\Rightarrow a < b$ $\Rightarrow \text{ a is less than or equal to b }\Rightarrow \text{ b is not less than or equal to a}$ .
From set R, we can see that $\left( 1,2 \right)\in R$ But $\left( 2,1 \right)\notin R$
$\left( 2,3 \right)\in R,\text{ But }\left( 3,2 \right)\notin R$ .
Therefore, R is not symmetric.
Check transitivity: If \[\left( a,b \right)\in R\] and $\left( b,c \right)\in R$ for $a,b,c\in S$ and $\left( a,c \right)\in R$ , then R is transitive.
From the set R, we can clearly see that –
$\begin{align}
& \left( 1,2 \right)\in R\text{ and }\left( 2,3 \right)\in R\text{ then }\left( 1,3 \right)\in R \\
& \left( 1,2 \right)\in R\text{ and }\left( 2,4 \right)\in R\text{ then }\left( 1,4 \right)\in R \\
& \left( 1,3 \right)\in R\text{ and }\left( 3,8 \right)\in R\text{ then }\left( 1,8 \right)\in R \\
\end{align}$
…………………………………….. and so on.
We can also notice that if $\left( a,b \right)\in R\Rightarrow a < b$…..(1)
And $\left( b,c \right)\in R\Rightarrow b < c$ ……………………. (2)
From (1) and (2) we can conclude that $a < c$ .
Therefore, R is transitive.
Hence we conclude that relation R is transitive but not reflexive and symmetric.
Note: To prove that R is transitive, be careful that if $\left( a,b \right)\in R$ and $\left( b,c \right)\in R$ then $\left( a,c \right)\in R$ . If there is no pair such that $\left( a,b \right)\in R$ and $\left( b,c \right)\in R$. Then we don’t need to check, R will always be transitive in this case.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

