
On the interval [0,1] the function ${{x}^{25}}{{\left( 1-x \right)}^{75}}$ takes its maximum value at the point
\[\begin{align}
& A.0 \\
& B.\dfrac{1}{4} \\
& C.\dfrac{1}{2} \\
& D.\dfrac{1}{3} \\
\end{align}\]
Answer
575.4k+ views
Hint: In this question, we need to find the value of x in the interval (0,1) at which the function ${{x}^{25}}{{\left( 1-x \right)}^{75}}$ takes its maximum value. For this, we will use the first derivative test. We will suppose the given function as f(x) and then differentiate to find f'(x). Then we will put f'(x)=0 to find the value of x. One of these values of x will give us the maximum value of f(x). To find the required value, we will put all these values in f(x) and find the maximum value of f(x) and hence find the value of x which makes f(x) maximum. Properties of derivative that we will use are:
(1) Product rule: Derivative of product of two functions u and v is given by $\dfrac{d}{dx}\left( u\cdot v \right)=\dfrac{udv}{dx}+\dfrac{vdu}{dx}$.
(2) $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ where n is real number.
(3) Chain rule: $\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)\cdot g'\left( x \right)$.
Complete step-by-step solution
Here we are given the function as ${{x}^{25}}{{\left( 1-x \right)}^{75}},x\in \left[ 0,1 \right]$.
Let us suppose this to be f(x). So, $f\left( x \right)={{x}^{25}}{{\left( 1-x \right)}^{75}},x\in \left[ 0,1 \right]$.
Differentiating w.r.t. x, we get:
\[\Rightarrow f'\left( x \right)=\dfrac{d}{dx}\left( {{x}^{25}}{{\left( 1-x \right)}^{75}} \right)\]
Using product rule which is given as $\dfrac{d}{dx}\left( u\cdot v \right)=\dfrac{udv}{dx}+\dfrac{vdu}{dx}$ we get:
\[\Rightarrow f'\left( x \right)={{x}^{25}}\dfrac{d}{dx}{{\left( 1-x \right)}^{75}}+{{\left( 1-x \right)}^{75}}\dfrac{d}{dx}\left( {{x}^{25}} \right)\]
We know, $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}\text{ and }\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)\cdot \dfrac{d}{dx}g'\left( x \right)$ therefore,
\[\begin{align}
& f'\left( x \right)={{x}^{25}}\left( 75{{\left( 1-x \right)}^{75-1}}\left( -1 \right) \right)+{{\left( 1-x \right)}^{75}}\left( 25{{x}^{25-1}} \right) \\
& \Rightarrow {{x}^{25}}\left( -75{{\left( 1-x \right)}^{74}} \right)+25{{\left( 1-x \right)}^{75}}{{x}^{24}} \\
& \Rightarrow -75{{x}^{25}}{{\left( 1-x \right)}^{74}}+25{{\left( 1-x \right)}^{75}}{{x}^{24}} \\
\end{align}\]
Taking $25{{x}^{24}}{{\left( 1-x \right)}^{74}}$ common we get:
\[\begin{align}
& \Rightarrow f'\left( x \right)=25{{x}^{24}}{{\left( 1-x \right)}^{74}}\left[ \left( 1-x \right)-3x \right] \\
& \Rightarrow f'\left( x \right)=25{{x}^{24}}{{\left( 1-x \right)}^{74}}\left( 1-4x \right) \\
\end{align}\]
For finding values of x, putting f'(x)=0, we get:
\[\Rightarrow f'\left( x \right)=25{{x}^{24}}{{\left( 1-x \right)}^{74}}\left( 1-4x \right)=0\]
Therefore, $x = 0, (1-x)=0$ and $(1-4x)=0.$
\[\Rightarrow x=0,x=1\text{ and }x=\dfrac{1}{4}\]
To check maximum value, let us put these values one by one in f(x), we get:
For $x = 0, f(0) = 0.$
For $x = 1, f(1) = 0.$
For $x=\dfrac{1}{4},f\left( \dfrac{1}{4} \right)={{\left( \dfrac{1}{4} \right)}^{25}}{{\left( 1-\dfrac{1}{4} \right)}^{75}}={{\left( \dfrac{1}{4} \right)}^{25}}{{\left( \dfrac{3}{4} \right)}^{75}}\text{ }>\text{ }0$.
Thus, putting $x=\dfrac{1}{4}$ gives us the maximum value of f(x).
Therefore, option B is the correct answer.
Note: Students can make mistakes while calculating derivatives of a given function because the function involves huge numbers. Students can also attain the maximum value of any function using a second derivative test where they put the value of x in f''(x) and if f''(x) is negative then the value of x at which f''(x)< 0 gives the maximum value of f(x). Make sure that the found solution lies between (0,1).
(1) Product rule: Derivative of product of two functions u and v is given by $\dfrac{d}{dx}\left( u\cdot v \right)=\dfrac{udv}{dx}+\dfrac{vdu}{dx}$.
(2) $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ where n is real number.
(3) Chain rule: $\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)\cdot g'\left( x \right)$.
Complete step-by-step solution
Here we are given the function as ${{x}^{25}}{{\left( 1-x \right)}^{75}},x\in \left[ 0,1 \right]$.
Let us suppose this to be f(x). So, $f\left( x \right)={{x}^{25}}{{\left( 1-x \right)}^{75}},x\in \left[ 0,1 \right]$.
Differentiating w.r.t. x, we get:
\[\Rightarrow f'\left( x \right)=\dfrac{d}{dx}\left( {{x}^{25}}{{\left( 1-x \right)}^{75}} \right)\]
Using product rule which is given as $\dfrac{d}{dx}\left( u\cdot v \right)=\dfrac{udv}{dx}+\dfrac{vdu}{dx}$ we get:
\[\Rightarrow f'\left( x \right)={{x}^{25}}\dfrac{d}{dx}{{\left( 1-x \right)}^{75}}+{{\left( 1-x \right)}^{75}}\dfrac{d}{dx}\left( {{x}^{25}} \right)\]
We know, $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}\text{ and }\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)\cdot \dfrac{d}{dx}g'\left( x \right)$ therefore,
\[\begin{align}
& f'\left( x \right)={{x}^{25}}\left( 75{{\left( 1-x \right)}^{75-1}}\left( -1 \right) \right)+{{\left( 1-x \right)}^{75}}\left( 25{{x}^{25-1}} \right) \\
& \Rightarrow {{x}^{25}}\left( -75{{\left( 1-x \right)}^{74}} \right)+25{{\left( 1-x \right)}^{75}}{{x}^{24}} \\
& \Rightarrow -75{{x}^{25}}{{\left( 1-x \right)}^{74}}+25{{\left( 1-x \right)}^{75}}{{x}^{24}} \\
\end{align}\]
Taking $25{{x}^{24}}{{\left( 1-x \right)}^{74}}$ common we get:
\[\begin{align}
& \Rightarrow f'\left( x \right)=25{{x}^{24}}{{\left( 1-x \right)}^{74}}\left[ \left( 1-x \right)-3x \right] \\
& \Rightarrow f'\left( x \right)=25{{x}^{24}}{{\left( 1-x \right)}^{74}}\left( 1-4x \right) \\
\end{align}\]
For finding values of x, putting f'(x)=0, we get:
\[\Rightarrow f'\left( x \right)=25{{x}^{24}}{{\left( 1-x \right)}^{74}}\left( 1-4x \right)=0\]
Therefore, $x = 0, (1-x)=0$ and $(1-4x)=0.$
\[\Rightarrow x=0,x=1\text{ and }x=\dfrac{1}{4}\]
To check maximum value, let us put these values one by one in f(x), we get:
For $x = 0, f(0) = 0.$
For $x = 1, f(1) = 0.$
For $x=\dfrac{1}{4},f\left( \dfrac{1}{4} \right)={{\left( \dfrac{1}{4} \right)}^{25}}{{\left( 1-\dfrac{1}{4} \right)}^{75}}={{\left( \dfrac{1}{4} \right)}^{25}}{{\left( \dfrac{3}{4} \right)}^{75}}\text{ }>\text{ }0$.
Thus, putting $x=\dfrac{1}{4}$ gives us the maximum value of f(x).
Therefore, option B is the correct answer.
Note: Students can make mistakes while calculating derivatives of a given function because the function involves huge numbers. Students can also attain the maximum value of any function using a second derivative test where they put the value of x in f''(x) and if f''(x) is negative then the value of x at which f''(x)< 0 gives the maximum value of f(x). Make sure that the found solution lies between (0,1).
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

