
On making a coil of copper wire of length I and coil radius , the value of self-inductance is obtained as L. If the coil of same wire, but of coil radius is made, the value' of self-inductance will be-I
A.
B. 4 L
C.
D.
Answer
487.5k+ views
1 likes
Hint: In electromagnetism and electronics, inductance is an electrical conductor's tendency to oppose a change in the electrical current that flows through it. A magnetic field around the conductor is created by the flow of electric current. We may also increase inductance by increasing the diameter of the coils, as well as increasing the number of coil turns, or making the core longer.
Formula used:
Complete solution:
We know the formula for self-inductance of the coil “L” is given as,
-(I)
Where
N = no. of turns of coil
I = current
φB = magnetic flux
B = magnetic field
Case 1:
Initial coil radius =
Here let the initial self-inductance be denoted as “ ”.
-(II)
Case 2:
Here we have the coil of same wire but the coil radius =
Let the self- inductance after the change in the radius of the coil be denoted as “ ”.
- (III)
Now, on dividing the equation (iii) by (ii), we get
Thus, the value of self-inductance after the coil radius becomes .
Hence, the correct option is (c).
Note:
In electromagnetism and electronics, an electrical conductor's tendency to oppose a change in the electrical current that flows through it is inductance. A magnetic field around the conductor is created by the flow of electric current. Long solenoid inductance depends solely on its physical characteristics (such as the number of wire rotations per unit length and volume) and not on the magnetic field or current.
Formula used:
Complete solution:
We know the formula for self-inductance of the coil “L” is given as,
Where
N = no. of turns of coil
I = current
φB = magnetic flux
B = magnetic field
Case 1:
Initial coil radius =
Here let the initial self-inductance be denoted as “
Case 2:
Here we have the coil of same wire but the coil radius =
Let the self- inductance after the change in the radius of the coil be denoted as “
Now, on dividing the equation (iii) by (ii), we get
Thus, the value of self-inductance after the coil radius becomes
Hence, the correct option is (c).
Note:
In electromagnetism and electronics, an electrical conductor's tendency to oppose a change in the electrical current that flows through it is inductance. A magnetic field around the conductor is created by the flow of electric current. Long solenoid inductance depends solely on its physical characteristics (such as the number of wire rotations per unit length and volume) and not on the magnetic field or current.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Why is insulin not administered orally to a diabetic class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Define Vant Hoff factor How is it related to the degree class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

The current flowing through the resistor in a series class 12 physics CBSE

Name the part of the flower which the tassels of the class 12 biology CBSE
