
Obtain the reduction formula for \[\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{n}}xdx}\] for an integer \[n\ge 2.\]
Answer
599.4k+ views
Hint: Solve the integral by putting \[{{\sin }^{n}}x={{\sin }^{n-1}}x.\sin x\] and expand it using \[\int{uv=u\int{v.dx-\int{\dfrac{d}{dx}\left( u \right)}\int{\left( vdx \right)dx}}}\]
(Use the integral formula to solve the problem.)
Complete step-by-step answer:
Given, \[I=\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{n}}xdx}\].
Let, \[{{I}_{n}}=\int{{{\sin }^{n}}xdx}\]
Let us write \[{{\sin }^{n}}x={{\sin }^{n-1}}x.\sin xdx\]
\[\Rightarrow {{I}_{n}}=\int{\left( {{\sin }^{n-1}}x \right)\left( \sin x \right)dx}\]
Let us take \[u={{\sin }^{n-1}}x\]and \[v=\sin x\]
\[\therefore {{I}_{n}}=\int{uv}\]
i.e. \[{{I}_{n}}=u\int{v.dx}-\int{\dfrac{d}{dx}\left( u \right)\int{\left( v.dx \right)dx}}\]
\[\therefore {{I}_{n}}={{\sin }^{n-1}}x\int{\sin x.dx}-\int{\dfrac{d}{dx}}\left( {{\sin }^{n-1}}x \right)\int{\left( \sin x.dx \right)dx}\]
\[\Rightarrow \]We know \[\int{\sin x.dx}=-\cos x+C\]
\[\int{\cos x.dx}=\sin x+C\]
\[\begin{align}
& \therefore {{I}_{n}}=-\cos x.{{\sin }^{n-1}}x-\int{\left( n-1 \right){{\sin }^{n-2}}x.\cos x\left( -\cos x \right)dx} \\
& {{I}_{n}}=-\cos x.{{\sin }^{n-1}}x+\left( n-1 \right)\int{{{\sin }^{n-2}}x{{\cos }^{2}}x.dx} \\
\end{align}\]
In the above equation, \[{{\cos }^{2}}x=1-{{\sin }^{2}}x\]
\[\begin{align}
& \left( n-1 \right)\left[ {{\sin }^{n-2}}x\left( 1-{{\sin }^{2}}x \right) \right]=\left( n-1 \right){{\sin }^{n-2}}x-\left( n-1 \right){{\sin }^{\left( n-2+2 \right)}}x \\
& \left( n-1 \right)\left[ {{\sin }^{n-2}}x\left( 1-{{\sin }^{2}}x \right) \right]=\left( n-1 \right){{\sin }^{n-2}}x-\left( n-1 \right){{\sin }^{n}}x \\
& \Rightarrow {{I}_{n}}=-\cos x{{\sin }^{n-1}}x+\left( n-1 \right)\int{{{\sin }^{n-2}}xdx-\left( n-1 \right)\int{{{\sin }^{n}}x.dx}} \\
& \therefore {{I}_{n}}=-\cos x{{\sin }^{n-1}}x+\left( n-1 \right){{I}_{n-2}}-\left( n-1 \right){{I}_{n}} \\
\end{align}\]
Here, \[{{I}_{n}}={{\sin }^{n}}xdx\]
\[{{I}_{n-2}}={{\sin }^{n-2}}xdx\]
\[\begin{align}
& \Rightarrow {{I}_{n}}+\left( n-1 \right){{I}_{n}}=-\cos x.{{\sin }^{n-1}}x+\left( n-1 \right){{I}_{n-2}} \\
& \therefore n{{I}_{n}}=-\cos x{{\sin }^{n-1}}x+\left( n-1 \right){{I}_{n-2}} \\
& \therefore {{I}_{n}}=\dfrac{-\cos x{{\sin }^{n-1}}x}{n}+\dfrac{\left( n-1 \right)}{n}{{I}_{n-2}} \\
& \Rightarrow {{I}_{n}}=\dfrac{1}{n}\left[ \left( n-1 \right){{I}_{n-2}}-\cos x.{{\sin }^{n-1}}x \right] \\
\end{align}\]
Now, putting the interval \[\left( 0,\dfrac{\pi }{2} \right)\]
\[\begin{align}
& {{I}_{n}}=\left[ \dfrac{1}{n}\left[ \left( n-1 \right){{I}_{n-2}}-\cos x.{{\sin }^{n-1}}x \right] \right]_{0}^{\dfrac{\pi }{2}} \\
& \Rightarrow \dfrac{1}{n}\left[ \left( n-1 \right){{\sin }^{n-2}}\left( \dfrac{\pi }{2} \right)-\cos \left( \dfrac{\pi }{2} \right){{\sin }^{n-1}}\left( \dfrac{\pi }{2} \right) \right]-\dfrac{1}{n}\left[ 0+0 \right] \\
& =\dfrac{1}{n}\left[ \left[ n-1 \right]{{\sin }^{n-2}}\left( \dfrac{\pi }{2} \right)-\cos \left( \dfrac{\pi }{2} \right){{\sin }^{n-1}}\left( \dfrac{\pi }{2} \right) \right] \\
& \because \cos \left( \dfrac{\pi }{2} \right)=0,\sin \left( \dfrac{\pi }{2} \right)=1 \\
& =\dfrac{1}{n}\left[ \left( n-1 \right){{\sin }^{n-2}}\left( \dfrac{\pi }{2} \right)-0 \right]=\dfrac{1}{n}\left( n-1 \right) \\
& \therefore \int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{n}}xdx}=\dfrac{n-1}{n} \\
\end{align}\]
Note: After solving integral by putting \[{{\sin }^{n}}x={{\sin }^{n-1}}x.\sin x\] and once the reduction is obtained remember to put \[\left( 0,\dfrac{\pi }{2} \right)\] to obtain \[\dfrac{\left( n-1 \right)}{n}\].
(Use the integral formula to solve the problem.)
Complete step-by-step answer:
Given, \[I=\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{n}}xdx}\].
Let, \[{{I}_{n}}=\int{{{\sin }^{n}}xdx}\]
Let us write \[{{\sin }^{n}}x={{\sin }^{n-1}}x.\sin xdx\]
\[\Rightarrow {{I}_{n}}=\int{\left( {{\sin }^{n-1}}x \right)\left( \sin x \right)dx}\]
Let us take \[u={{\sin }^{n-1}}x\]and \[v=\sin x\]
\[\therefore {{I}_{n}}=\int{uv}\]
i.e. \[{{I}_{n}}=u\int{v.dx}-\int{\dfrac{d}{dx}\left( u \right)\int{\left( v.dx \right)dx}}\]
\[\therefore {{I}_{n}}={{\sin }^{n-1}}x\int{\sin x.dx}-\int{\dfrac{d}{dx}}\left( {{\sin }^{n-1}}x \right)\int{\left( \sin x.dx \right)dx}\]
\[\Rightarrow \]We know \[\int{\sin x.dx}=-\cos x+C\]
\[\int{\cos x.dx}=\sin x+C\]
\[\begin{align}
& \therefore {{I}_{n}}=-\cos x.{{\sin }^{n-1}}x-\int{\left( n-1 \right){{\sin }^{n-2}}x.\cos x\left( -\cos x \right)dx} \\
& {{I}_{n}}=-\cos x.{{\sin }^{n-1}}x+\left( n-1 \right)\int{{{\sin }^{n-2}}x{{\cos }^{2}}x.dx} \\
\end{align}\]
In the above equation, \[{{\cos }^{2}}x=1-{{\sin }^{2}}x\]
\[\begin{align}
& \left( n-1 \right)\left[ {{\sin }^{n-2}}x\left( 1-{{\sin }^{2}}x \right) \right]=\left( n-1 \right){{\sin }^{n-2}}x-\left( n-1 \right){{\sin }^{\left( n-2+2 \right)}}x \\
& \left( n-1 \right)\left[ {{\sin }^{n-2}}x\left( 1-{{\sin }^{2}}x \right) \right]=\left( n-1 \right){{\sin }^{n-2}}x-\left( n-1 \right){{\sin }^{n}}x \\
& \Rightarrow {{I}_{n}}=-\cos x{{\sin }^{n-1}}x+\left( n-1 \right)\int{{{\sin }^{n-2}}xdx-\left( n-1 \right)\int{{{\sin }^{n}}x.dx}} \\
& \therefore {{I}_{n}}=-\cos x{{\sin }^{n-1}}x+\left( n-1 \right){{I}_{n-2}}-\left( n-1 \right){{I}_{n}} \\
\end{align}\]
Here, \[{{I}_{n}}={{\sin }^{n}}xdx\]
\[{{I}_{n-2}}={{\sin }^{n-2}}xdx\]
\[\begin{align}
& \Rightarrow {{I}_{n}}+\left( n-1 \right){{I}_{n}}=-\cos x.{{\sin }^{n-1}}x+\left( n-1 \right){{I}_{n-2}} \\
& \therefore n{{I}_{n}}=-\cos x{{\sin }^{n-1}}x+\left( n-1 \right){{I}_{n-2}} \\
& \therefore {{I}_{n}}=\dfrac{-\cos x{{\sin }^{n-1}}x}{n}+\dfrac{\left( n-1 \right)}{n}{{I}_{n-2}} \\
& \Rightarrow {{I}_{n}}=\dfrac{1}{n}\left[ \left( n-1 \right){{I}_{n-2}}-\cos x.{{\sin }^{n-1}}x \right] \\
\end{align}\]
Now, putting the interval \[\left( 0,\dfrac{\pi }{2} \right)\]
\[\begin{align}
& {{I}_{n}}=\left[ \dfrac{1}{n}\left[ \left( n-1 \right){{I}_{n-2}}-\cos x.{{\sin }^{n-1}}x \right] \right]_{0}^{\dfrac{\pi }{2}} \\
& \Rightarrow \dfrac{1}{n}\left[ \left( n-1 \right){{\sin }^{n-2}}\left( \dfrac{\pi }{2} \right)-\cos \left( \dfrac{\pi }{2} \right){{\sin }^{n-1}}\left( \dfrac{\pi }{2} \right) \right]-\dfrac{1}{n}\left[ 0+0 \right] \\
& =\dfrac{1}{n}\left[ \left[ n-1 \right]{{\sin }^{n-2}}\left( \dfrac{\pi }{2} \right)-\cos \left( \dfrac{\pi }{2} \right){{\sin }^{n-1}}\left( \dfrac{\pi }{2} \right) \right] \\
& \because \cos \left( \dfrac{\pi }{2} \right)=0,\sin \left( \dfrac{\pi }{2} \right)=1 \\
& =\dfrac{1}{n}\left[ \left( n-1 \right){{\sin }^{n-2}}\left( \dfrac{\pi }{2} \right)-0 \right]=\dfrac{1}{n}\left( n-1 \right) \\
& \therefore \int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{n}}xdx}=\dfrac{n-1}{n} \\
\end{align}\]
Note: After solving integral by putting \[{{\sin }^{n}}x={{\sin }^{n-1}}x.\sin x\] and once the reduction is obtained remember to put \[\left( 0,\dfrac{\pi }{2} \right)\] to obtain \[\dfrac{\left( n-1 \right)}{n}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

