
Obtain the inverse Laplace transform : \[\]$\dfrac{{2s - 1}}{{{s^3} - s}}$
Answer
534.3k+ views
Hint: To find the inverse Laplace form we use the following notation:
$f(t) = {L^{ - 1}}\left\{ {F(s)} \right\}$
In the following question ,$F(s) = \dfrac{{2s - 1}}{{{s^3} - s}}$
Complete step by step answer:
$f(t) = {L^{ - 1}}\left\{ {\dfrac{{2s - 1}}{{{s^3} - s}}} \right\}$
Now,
$
= {L^{ - 1}}\left\{ {\dfrac{{2s - 1}}{{{s^3} - s}}} \right\} \\
= {L^{ - 1}}\left\{ {\dfrac{{2s - 1}}{{s({s^2} - 1)}}} \right\} \\
= {L^{ - 1}}\left\{ {\dfrac{{2s - 1}}{{s(s - 1)(s + 1)}}} \right\} \\
$
Using partial fraction ;
$
\dfrac{A}{s} + \dfrac{B}{{s - 1}} + \dfrac{C}{{s + 1}} = \dfrac{{2s - 1}}{{s(s - 1)(s + 1)}} \\
\dfrac{{A(s - 1)(s + 1) + Bs(s + 1) + Cs(s - 1)}}{{s(s - 1)(s + 1)}} = \dfrac{{2s - 1}}{{s(s - 1)(s + 1)}} \\
\dfrac{{A({s^2} - 1) + B({s^2} + s) + C({s^2} - s)}}{{s(s - 1)(s + 1)}} = = \dfrac{{2s - 1}}{{s(s - 1)(s + 1)}} \\
$
Comparing the coefficients of ${s^2}$:
$A + B + C = 0 - (i)$
Comparing the coefficient of $s$:
$B - C = 2 - (ii)$
Comparing the coefficients of constants:
$
- A = - 1 \\
A = 1 - (iii) \\
$
From $(i)$ and $(ii)$
$
B = C + 2 \\
A + B + C = 0 \\
A + C + 2 + C = 0 \\
A + 2C = - 2 \\
\\
$
From $(iii)$
$
1 + 2c = - 2 \\
2c = - 2 - 1 \\
2c = - 3 \\
c = \dfrac{{ - 3}}{2} \\
$
Now,
$
B = C + 2 \\
B = \dfrac{{ - 3}}{2} + 2 \\
B = \dfrac{1}{2} \\
$
Hence;
$
= {L^{ - 1}}\left\{ {\dfrac{1}{s} + \dfrac{1}{2}(\dfrac{1}{{s - 1}}) - \dfrac{3}{2}(\dfrac{1}{{s + 1}})} \right\} \\
= {L^{ - 1}}\left\{ {\dfrac{1}{s}} \right\} + \dfrac{1}{2}{L^{ - 1}}\left\{ {\dfrac{1}{{s - 1}}} \right\} - \dfrac{3}{2}{L^{ - 1}}\left\{ {\dfrac{1}{{s + 1}}} \right\} \\
\\
$
Since, the standard formula is ${L^{ - 1}}\left\{ {\dfrac{1}{{s - a}}} \right\} = {e^{at}}$
$
= {e^{0t}} + \dfrac{1}{2}{e^{1t}} - \dfrac{3}{2}{e^{ - 1t}} \\
= 1 + \dfrac{1}{2}{e^t} - \dfrac{3}{2}{e^{ - t}} \\
$
Note: Laplace transform is a mathematical tool mostly used in the engineering field to transform an equation from one form to another. It is also an integral transform that converts a function of a real variable (often time) to a function of a complex variable.
$f(t) = {L^{ - 1}}\left\{ {F(s)} \right\}$
In the following question ,$F(s) = \dfrac{{2s - 1}}{{{s^3} - s}}$
Complete step by step answer:
$f(t) = {L^{ - 1}}\left\{ {\dfrac{{2s - 1}}{{{s^3} - s}}} \right\}$
Now,
$
= {L^{ - 1}}\left\{ {\dfrac{{2s - 1}}{{{s^3} - s}}} \right\} \\
= {L^{ - 1}}\left\{ {\dfrac{{2s - 1}}{{s({s^2} - 1)}}} \right\} \\
= {L^{ - 1}}\left\{ {\dfrac{{2s - 1}}{{s(s - 1)(s + 1)}}} \right\} \\
$
Using partial fraction ;
$
\dfrac{A}{s} + \dfrac{B}{{s - 1}} + \dfrac{C}{{s + 1}} = \dfrac{{2s - 1}}{{s(s - 1)(s + 1)}} \\
\dfrac{{A(s - 1)(s + 1) + Bs(s + 1) + Cs(s - 1)}}{{s(s - 1)(s + 1)}} = \dfrac{{2s - 1}}{{s(s - 1)(s + 1)}} \\
\dfrac{{A({s^2} - 1) + B({s^2} + s) + C({s^2} - s)}}{{s(s - 1)(s + 1)}} = = \dfrac{{2s - 1}}{{s(s - 1)(s + 1)}} \\
$
Comparing the coefficients of ${s^2}$:
$A + B + C = 0 - (i)$
Comparing the coefficient of $s$:
$B - C = 2 - (ii)$
Comparing the coefficients of constants:
$
- A = - 1 \\
A = 1 - (iii) \\
$
From $(i)$ and $(ii)$
$
B = C + 2 \\
A + B + C = 0 \\
A + C + 2 + C = 0 \\
A + 2C = - 2 \\
\\
$
From $(iii)$
$
1 + 2c = - 2 \\
2c = - 2 - 1 \\
2c = - 3 \\
c = \dfrac{{ - 3}}{2} \\
$
Now,
$
B = C + 2 \\
B = \dfrac{{ - 3}}{2} + 2 \\
B = \dfrac{1}{2} \\
$
Hence;
$
= {L^{ - 1}}\left\{ {\dfrac{1}{s} + \dfrac{1}{2}(\dfrac{1}{{s - 1}}) - \dfrac{3}{2}(\dfrac{1}{{s + 1}})} \right\} \\
= {L^{ - 1}}\left\{ {\dfrac{1}{s}} \right\} + \dfrac{1}{2}{L^{ - 1}}\left\{ {\dfrac{1}{{s - 1}}} \right\} - \dfrac{3}{2}{L^{ - 1}}\left\{ {\dfrac{1}{{s + 1}}} \right\} \\
\\
$
Since, the standard formula is ${L^{ - 1}}\left\{ {\dfrac{1}{{s - a}}} \right\} = {e^{at}}$
$
= {e^{0t}} + \dfrac{1}{2}{e^{1t}} - \dfrac{3}{2}{e^{ - 1t}} \\
= 1 + \dfrac{1}{2}{e^t} - \dfrac{3}{2}{e^{ - t}} \\
$
Note: Laplace transform is a mathematical tool mostly used in the engineering field to transform an equation from one form to another. It is also an integral transform that converts a function of a real variable (often time) to a function of a complex variable.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

