
Obtain reduction formula: \[\int {{{\tan }^n}xdx} \] for integer \[n \geqslant 2\] and evaluate \[\int {{{\tan }^6}xdx} \]
Answer
585k+ views
Hint: First we will assume the given integral to be equal to I and then simplify it and use the following identity:-
\[{\tan ^2}x = {\sec ^2}x - 1\]
And also, the formulas for integration:-
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \]
\[\int {{{\sec }^2}xdx = \tan x + C} \]
And for evaluating the value of \[\int {{{\tan }^6}xdx} \] we will substitute the value of n as 6 in the formula obtained.
Complete step-by-step answer:
Let \[{I_n} = \int {{{\tan }^n}xdx} \]
Simplifying it we get:-
\[{I_n} = \int {{{\tan }^2}x{{\tan }^{n - 2}}xdx} \]
Now we know that,
\[{\tan ^2}x = {\sec ^2}x - 1\]
Hence applying this identity we get:-
\[{I_n} = \int {\left( {{{\sec }^2}x - 1} \right){{\tan }^{n - 2}}xdx} \]
Simplifying it further we get:-
\[{I_n} = \int {{{\sec }^2}x} {\tan ^{n - 2}}xdx - \int {{{\tan }^{n - 2}}xdx} \]
Now we know that,
\[{I_{n - 2}} = \int {{{\tan }^{n - 2}}xdx} \]
Hence, substituting this value in above equation we get:-
\[{I_n} = \int {{{\sec }^2}x} {\tan ^{n - 2}}xdx - {I_{n - 2}}\]
Simplifying it we get:-
\[{I_n} + {I_{n - 2}} = \int {{{\sec }^2}x} {\tan ^{n - 2}}xdx\]………………………. (1)
Now let \[\tan x = u\]
Differentiating both the sides with respect to x we get:-
\[\dfrac{d}{{dx}}\left( {\tan x} \right) = \dfrac{{du}}{{dx}}\]
We know that, \[\dfrac{d}{{dx}}\tan x = {\sec ^2}x\]
Hence, substituting the value we get:-
\[{\sec ^2}x = \dfrac{{du}}{{dx}}\]
\[ \Rightarrow {\sec ^2}xdx = du\]
Substituting the respective values in equation 1 we get:-
\[{I_n} + {I_{n - 2}} = \int {{u^{n - 2}}du} \]
Now we know that,
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \]
Hence, applying this formula we get:-
\[{I_n} + {I_{n - 2}} = \dfrac{{{u^{n - 2 + 1}}}}{{n - 2 + 1}} + C\]
Simplifying it we get:-
\[{I_n} + {I_{n - 2}} = \dfrac{{{u^{n - 1}}}}{{n - 1}} + C\]
Now substituting back the value of u we get:-
\[{I_n} + {I_{n - 2}} = \dfrac{{{{\tan }^{n - 1}}x}}{{n - 1}} + C\]
Therefore, the reduction formula is:-
\[{I_n} = \dfrac{{{{\tan }^{n - 1}}x}}{{n - 1}} - {I_{n - 2}}\]
Now we need to evaluate the value of \[\int {{{\tan }^6}xdx} \]
Hence, we need to substitute the value of n as 6.
Therefore, on substituting we get:-
\[{I_6} = \dfrac{{{{\tan }^{6 - 1}}x}}{{6 - 1}} - {I_{6 - 2}}\]
Simplifying it we get:-
\[{I_6} = \dfrac{{{{\tan }^5}x}}{5} - {I_4}\]……………………….. (2)
Now we need to find the value of \[{I_4}\]
Therefore, putting \[n = 4\]in reduction formula we get:-
\[{I_4} = \dfrac{{{{\tan }^{4 - 1}}x}}{{4 - 1}} - {I_{4 - 2}}\]
Simplifying it we get:-
\[{I_4} = \dfrac{{{{\tan }^3}x}}{3} - {I_2}\]……………………. (3)
Now we have to find the value of \[{I_2}\]
Therefore, putting \[n = 2\]in reduction formula we get:-
\[{I_2} = \dfrac{{{{\tan }^{2 - 1}}x}}{{2 - 1}} - {I_{2 - 2}}\]
Simplifying it we get:-
\[{I_2} = \tan x - {I_0}\]……………………. (4)
Now we know that,
\[{I_0} = \int {{{\tan }^0}x} dx\]
\[{I_0} = \int 1 dx\]
On integration we get:-
\[{I_0} = x\]
Substituting this value in equation 4 we get:-
\[{I_2} = \tan x - x\]
Now substituting this value in equation 3 we get:-
\[{I_4} = \dfrac{{{{\tan }^3}x}}{3} - \left( {\tan x - x} \right)\]
\[ \Rightarrow {I_4} = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x\]
Now substituting this value in equation 2 we get:-
\[{I_6} = \dfrac{{{{\tan }^5}x}}{5} - \left( {\dfrac{{{{\tan }^3}x}}{3} - \tan x + x} \right)\]
Simplifying it we get:-
\[{I_6} = \dfrac{{{{\tan }^5}x}}{5} - \dfrac{{{{\tan }^3}x}}{3} + \tan x - x + C\].
Note: Students might forget to substitute back the value of u while finding the reduction formula.
Also, in finding values like \[{I_6}\] we should use the reduction formula to ease the calculations.
Students should note that, the general formula for integration is given by:-
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \]
Also, never forget to add a constant of integration C after integration in case of indefinite integrals.
\[{\tan ^2}x = {\sec ^2}x - 1\]
And also, the formulas for integration:-
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \]
\[\int {{{\sec }^2}xdx = \tan x + C} \]
And for evaluating the value of \[\int {{{\tan }^6}xdx} \] we will substitute the value of n as 6 in the formula obtained.
Complete step-by-step answer:
Let \[{I_n} = \int {{{\tan }^n}xdx} \]
Simplifying it we get:-
\[{I_n} = \int {{{\tan }^2}x{{\tan }^{n - 2}}xdx} \]
Now we know that,
\[{\tan ^2}x = {\sec ^2}x - 1\]
Hence applying this identity we get:-
\[{I_n} = \int {\left( {{{\sec }^2}x - 1} \right){{\tan }^{n - 2}}xdx} \]
Simplifying it further we get:-
\[{I_n} = \int {{{\sec }^2}x} {\tan ^{n - 2}}xdx - \int {{{\tan }^{n - 2}}xdx} \]
Now we know that,
\[{I_{n - 2}} = \int {{{\tan }^{n - 2}}xdx} \]
Hence, substituting this value in above equation we get:-
\[{I_n} = \int {{{\sec }^2}x} {\tan ^{n - 2}}xdx - {I_{n - 2}}\]
Simplifying it we get:-
\[{I_n} + {I_{n - 2}} = \int {{{\sec }^2}x} {\tan ^{n - 2}}xdx\]………………………. (1)
Now let \[\tan x = u\]
Differentiating both the sides with respect to x we get:-
\[\dfrac{d}{{dx}}\left( {\tan x} \right) = \dfrac{{du}}{{dx}}\]
We know that, \[\dfrac{d}{{dx}}\tan x = {\sec ^2}x\]
Hence, substituting the value we get:-
\[{\sec ^2}x = \dfrac{{du}}{{dx}}\]
\[ \Rightarrow {\sec ^2}xdx = du\]
Substituting the respective values in equation 1 we get:-
\[{I_n} + {I_{n - 2}} = \int {{u^{n - 2}}du} \]
Now we know that,
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \]
Hence, applying this formula we get:-
\[{I_n} + {I_{n - 2}} = \dfrac{{{u^{n - 2 + 1}}}}{{n - 2 + 1}} + C\]
Simplifying it we get:-
\[{I_n} + {I_{n - 2}} = \dfrac{{{u^{n - 1}}}}{{n - 1}} + C\]
Now substituting back the value of u we get:-
\[{I_n} + {I_{n - 2}} = \dfrac{{{{\tan }^{n - 1}}x}}{{n - 1}} + C\]
Therefore, the reduction formula is:-
\[{I_n} = \dfrac{{{{\tan }^{n - 1}}x}}{{n - 1}} - {I_{n - 2}}\]
Now we need to evaluate the value of \[\int {{{\tan }^6}xdx} \]
Hence, we need to substitute the value of n as 6.
Therefore, on substituting we get:-
\[{I_6} = \dfrac{{{{\tan }^{6 - 1}}x}}{{6 - 1}} - {I_{6 - 2}}\]
Simplifying it we get:-
\[{I_6} = \dfrac{{{{\tan }^5}x}}{5} - {I_4}\]……………………….. (2)
Now we need to find the value of \[{I_4}\]
Therefore, putting \[n = 4\]in reduction formula we get:-
\[{I_4} = \dfrac{{{{\tan }^{4 - 1}}x}}{{4 - 1}} - {I_{4 - 2}}\]
Simplifying it we get:-
\[{I_4} = \dfrac{{{{\tan }^3}x}}{3} - {I_2}\]……………………. (3)
Now we have to find the value of \[{I_2}\]
Therefore, putting \[n = 2\]in reduction formula we get:-
\[{I_2} = \dfrac{{{{\tan }^{2 - 1}}x}}{{2 - 1}} - {I_{2 - 2}}\]
Simplifying it we get:-
\[{I_2} = \tan x - {I_0}\]……………………. (4)
Now we know that,
\[{I_0} = \int {{{\tan }^0}x} dx\]
\[{I_0} = \int 1 dx\]
On integration we get:-
\[{I_0} = x\]
Substituting this value in equation 4 we get:-
\[{I_2} = \tan x - x\]
Now substituting this value in equation 3 we get:-
\[{I_4} = \dfrac{{{{\tan }^3}x}}{3} - \left( {\tan x - x} \right)\]
\[ \Rightarrow {I_4} = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x\]
Now substituting this value in equation 2 we get:-
\[{I_6} = \dfrac{{{{\tan }^5}x}}{5} - \left( {\dfrac{{{{\tan }^3}x}}{3} - \tan x + x} \right)\]
Simplifying it we get:-
\[{I_6} = \dfrac{{{{\tan }^5}x}}{5} - \dfrac{{{{\tan }^3}x}}{3} + \tan x - x + C\].
Note: Students might forget to substitute back the value of u while finding the reduction formula.
Also, in finding values like \[{I_6}\] we should use the reduction formula to ease the calculations.
Students should note that, the general formula for integration is given by:-
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} \]
Also, never forget to add a constant of integration C after integration in case of indefinite integrals.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

