
What is the notation for the second derivative?
Answer
512.7k+ views
Hint: When a function is derived for the first time, it is called the first derivative. On deriving the first derivative again, we obtain the second derivative of the function. The derivative normally gives us the slope function at any point. The second derivative is called the derivative of the derivative.
Complete step by step solution:
Now let us learn more about the second derivative. The second derivative measures the instantaneous change of the first derivative. The sign of the second derivative signifies whether the slope of the tangent of the line to \[f\] is increasing or decreasing. We can simply define the second derivative as the rate of change of the original function.
Now let us express the notation for the second derivative.
Let us consider a function \[y=f\left( x \right)\].
As we know the notation of the first derivative is \[y’=f\left( x \right)\].
Upon deriving this function again, we denote it as \[y’’=f\left( x \right)\].
We can denote the notation in Leibniz notation form too as follows.
Let us consider the same function again.
Upon the first derivation, we denote it in the following way.
\[\begin{align}
& y=f\left( x \right) \\
& \Rightarrow \dfrac{dy}{dx}=f\left( x \right) \\
\end{align}\]
Since, we need the notation for the second derive we denote it in the following way.
\[\begin{align}
& y=f\left( x \right) \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=f\left( x \right) \\
\end{align}\]
Note: If the first derivative of a point is zero, it is a local minimum or a local maximum. If the derivative of the same point is positive the point is a local minimum. If the derivative of the same point is negative, the point is local maximum.
Complete step by step solution:
Now let us learn more about the second derivative. The second derivative measures the instantaneous change of the first derivative. The sign of the second derivative signifies whether the slope of the tangent of the line to \[f\] is increasing or decreasing. We can simply define the second derivative as the rate of change of the original function.
Now let us express the notation for the second derivative.
Let us consider a function \[y=f\left( x \right)\].
As we know the notation of the first derivative is \[y’=f\left( x \right)\].
Upon deriving this function again, we denote it as \[y’’=f\left( x \right)\].
We can denote the notation in Leibniz notation form too as follows.
Let us consider the same function again.
Upon the first derivation, we denote it in the following way.
\[\begin{align}
& y=f\left( x \right) \\
& \Rightarrow \dfrac{dy}{dx}=f\left( x \right) \\
\end{align}\]
Since, we need the notation for the second derive we denote it in the following way.
\[\begin{align}
& y=f\left( x \right) \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=f\left( x \right) \\
\end{align}\]
Note: If the first derivative of a point is zero, it is a local minimum or a local maximum. If the derivative of the same point is positive the point is a local minimum. If the derivative of the same point is negative, the point is local maximum.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

