
Name the gate which represents the Boolean expression, \[Y=\overline{A\text{ }.\text{ }B}\]
A.NAND
B.AND
C.NOT
D.NOR
Answer
582.6k+ views
Hint: The expressions in Boolean Algebra can be reduced to simple terms very easily using identities. The reduced expressions can be checked with the binary digits 0 and 1 to determine whether the given expression is a NAND, AND, NOT or NOR equivalent.
Complete answer:
There are mainly three types of gates in Boolean algebra. They are:
AND: It is a binary operation or gate which gives output only if both the statements are TRUE. The table of AND operation looks like:
OR: It is a binary operation which gives the output if any of the variables is TRUE (1). The table of OR (+) operation looks like:
NOT: It is a unary operation which inverts the variable. The table of NOT operation looks like:
Now let us consider the given expression,
\[Y=\overline{A\text{ }.\text{ }B}\]
We can use the similar tables to find the equivalent expression.
When we look at the basic gates, we can release that the table of \[Y=\overline{A\text{ }.\text{ }B}\] is the NOT operation on the AND operation.
The table of NAND operation can be derived from AND table as:
Therefore, the equivalent gate for \[Y=\overline{A\text{ }.\text{ }B}\] is a NAND gate.
The correct solution is option A.
Note:
Using the de Morgan’s theorem for Boolean algebra, \[Y=\overline{A\text{ }.\text{ }B}\] can be written as \[\overline{A\text{ }.\text{ }B}=\overline{A}+\overline{B}\]. We can find the solution to the question by using this theorem also. We need to find the complement values of A and B separately and use the OR operator.
All the operations in Boolean algebra can be derived from each other.
Complete answer:
There are mainly three types of gates in Boolean algebra. They are:
AND: It is a binary operation or gate which gives output only if both the statements are TRUE. The table of AND operation looks like:
OR: It is a binary operation which gives the output if any of the variables is TRUE (1). The table of OR (+) operation looks like:
NOT: It is a unary operation which inverts the variable. The table of NOT operation looks like:
Now let us consider the given expression,
\[Y=\overline{A\text{ }.\text{ }B}\]
We can use the similar tables to find the equivalent expression.
When we look at the basic gates, we can release that the table of \[Y=\overline{A\text{ }.\text{ }B}\] is the NOT operation on the AND operation.
The table of NAND operation can be derived from AND table as:
Therefore, the equivalent gate for \[Y=\overline{A\text{ }.\text{ }B}\] is a NAND gate.
The correct solution is option A.
Note:
Using the de Morgan’s theorem for Boolean algebra, \[Y=\overline{A\text{ }.\text{ }B}\] can be written as \[\overline{A\text{ }.\text{ }B}=\overline{A}+\overline{B}\]. We can find the solution to the question by using this theorem also. We need to find the complement values of A and B separately and use the OR operator.
All the operations in Boolean algebra can be derived from each other.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

