Answer

Verified

419.4k+ views

**Hint:**In this question, we have to find what we should subtract from $p\left( x \right)$ so that $q\left( x \right)$ is a factor of $p\left( x \right)$. For this, we just have to divide the polynomials. If the remainder becomes zero then it means that $q\left( x \right)$ is already a factor $p\left( x \right)$, and hence we need not to subtract or add any value. And if the remainder is non-zero, then we have to subtract that remainder from $p\left( x \right)$ so that $q\left( x \right)$ is a factor of $p\left( x \right)$.

**Complete step by step answer:**

We are given $p\left( x \right)=8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+8x-12$ and let $q\left( x \right)=4{{x}^{2}}+3x-2$. We have to find what must be added or subtracted from $p\left( x \right)$ so that $q\left( x \right)$ becomes a factor of $p\left( x \right)$. For this, we will find the remainder when $p\left( x \right)$ is divided by $q\left( x \right)$. Since remainder is an added term in $p\left( x \right)$, we will subtract it from $p\left( x \right)$ to obtain the required answer. Let us use long division method for dividing $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+8x-12$ by $4{{x}^{2}}+3x-2$.

\[\begin{align}

& 4{{x}^{2}}+3x-2\overset{2{{x}^{2}}+2x-1}{\overline{\left){8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+8x-12}\right.}} \\

& ~~~~~~~~~~~~~~~~~~~~-8{{x}^{4}}+6{{x}^{3}}-4{{x}^{2}} \\

& ~~~~~~~~~~~~~~~~~~~~\overline{~~~~0+8{{x}^{3}}+2{{x}^{2}}+8x-12~~~~} \\

& ~~~~~~~~~~~~~~~~~~~~~~~~~-\left( 8{{x}^{3}}+6{{x}^{2}}-4x \right) \\

& ~~~~~~~~~~~~~~~~~~~~~~~~~\overline{~~~~~~~~0-4{{x}^{2}}+12x-12} \\

& ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-\left( -4{{x}^{2}}-3x+2 \right) \\

& ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\overline{~~~~~0+15x-14~~~~~} \\

\end{align}\]

Explaining the above division step by step, firstly we multiplied $4{{x}^{2}}+3x-2$ by \[2{{x}^{2}}\] so that first term become same and can be eliminated while subtracting. Similarly other terms that are subtracted are written. After that $2x$ is multiplied to eliminate the first term. Proceeding similarly we obtained the remainder as $15x-14$. Since the degree of $15x-14$ is less than $4{{x}^{2}}+3x-2$, it cannot be divided further. So $15x-14$ is the required remainder.

Hence, we will have to subtract $15x-14$ from $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+8x-12$ so that $4{{x}^{2}}+3x-2$ become its factor.

**Note:**Students can make mistakes while performing division. There is a possibility of making mistakes in plus minus signs while dividing. Don’t forget to change signs of all terms while subtracting. The number which is multiplied is a factor of $p\left( x \right)$, that is, \[2{{x}^{2}}+2x-1\] is also a factor of $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+8x-12$. Always remember that remainder should always be subtracted from $p\left( x \right)$ to obtain the required answer.

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

10 examples of friction in our daily life

Trending doubts

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

10 examples of law on inertia in our daily life

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE