
How do you multiply\[-2{{u}^{2}}{{v}^{2}}\times {{\left( {{u}^{4}}{{v}^{4}} \right)}^{3}}\]?
Answer
548.4k+ views
Hint: In the given question, we have been asked to multiply the exponential expression. In order to multiply the given expression, we need to use the law of exponent and powers. First we open the brackets by using the law which states that when raising a base with power to another power, keeping the base the same and multiplying the exponents. Later we simplify the given expression by using a law of exponent which states that when multiplying the like bases, keep the base the same and add the exponents.
Formula used:
The law of exponents of power, which states that when raising a base with power to another power, keeping the base same and multiply the exponents, i.e. \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\].
The law of exponents of multiplication, which states that when multiplying the like bases, keep the base same and add the exponents, i.e. \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\].
Complete step by step solution:
We have given that,
\[\Rightarrow -2{{u}^{2}}{{v}^{2}}\times {{\left( {{u}^{4}}{{v}^{4}} \right)}^{3}}\]
Using the law of exponents of power, which states that when raising a base with power to another power, keeping the base same and multiply the exponents, i.e.
\[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\]
Tus,
Applying this law in the above given expression, we get
\[\Rightarrow -2{{u}^{2}}{{v}^{2}}\times {{\left( {{u}^{4}} \right)}^{3}}\times {{\left( {{v}^{4}} \right)}^{3}}\]
\[\Rightarrow -2{{u}^{2}}{{v}^{2}}\times \left( {{u}^{4\times 3}} \right)\times \left( {{v}^{4\times 3}} \right)\]
Simplifying the above expression, we get
\[\Rightarrow -2{{u}^{2}}{{v}^{2}}\times {{u}^{12}}\times {{v}^{12}}\]
Rewrite the above expression as;
\[\Rightarrow -2{{u}^{2}}{{v}^{2}}{{u}^{12}}{{v}^{12}}\]
Now,
Using the law of exponents of multiplication, which states that when multiplying the like bases, keep the base same and add the exponents, i.e.
\[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]
Applying this law of exponent in the above expression, we get
\[\Rightarrow -2{{u}^{2+12}}{{v}^{2+12}}\]
Simplifying the above expression, we get
\[\Rightarrow -2{{u}^{14}}{{v}^{14}}\]
Thus,
\[\Rightarrow -2{{u}^{2}}{{v}^{2}}\times {{\left( {{u}^{4}}{{v}^{4}} \right)}^{3}}=-2{{u}^{14}}{{v}^{14}}\]
Therefore, the product of \[-2{{u}^{2}}{{v}^{2}}\times {{\left( {{u}^{4}}{{v}^{4}} \right)}^{3}}\]is equals to \[-2{{u}^{14}}{{v}^{14}}\]. Hence, it is the required answer.
Note: While solving these types of questions, students need to know about the concepts of multiplication of exponents. They should remember the basic properties of exponential in order to solve the given expression. Students should be very careful while doing calculations to avoid making any errors as it will give us the wrong answer.
Formula used:
The law of exponents of power, which states that when raising a base with power to another power, keeping the base same and multiply the exponents, i.e. \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\].
The law of exponents of multiplication, which states that when multiplying the like bases, keep the base same and add the exponents, i.e. \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\].
Complete step by step solution:
We have given that,
\[\Rightarrow -2{{u}^{2}}{{v}^{2}}\times {{\left( {{u}^{4}}{{v}^{4}} \right)}^{3}}\]
Using the law of exponents of power, which states that when raising a base with power to another power, keeping the base same and multiply the exponents, i.e.
\[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\]
Tus,
Applying this law in the above given expression, we get
\[\Rightarrow -2{{u}^{2}}{{v}^{2}}\times {{\left( {{u}^{4}} \right)}^{3}}\times {{\left( {{v}^{4}} \right)}^{3}}\]
\[\Rightarrow -2{{u}^{2}}{{v}^{2}}\times \left( {{u}^{4\times 3}} \right)\times \left( {{v}^{4\times 3}} \right)\]
Simplifying the above expression, we get
\[\Rightarrow -2{{u}^{2}}{{v}^{2}}\times {{u}^{12}}\times {{v}^{12}}\]
Rewrite the above expression as;
\[\Rightarrow -2{{u}^{2}}{{v}^{2}}{{u}^{12}}{{v}^{12}}\]
Now,
Using the law of exponents of multiplication, which states that when multiplying the like bases, keep the base same and add the exponents, i.e.
\[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]
Applying this law of exponent in the above expression, we get
\[\Rightarrow -2{{u}^{2+12}}{{v}^{2+12}}\]
Simplifying the above expression, we get
\[\Rightarrow -2{{u}^{14}}{{v}^{14}}\]
Thus,
\[\Rightarrow -2{{u}^{2}}{{v}^{2}}\times {{\left( {{u}^{4}}{{v}^{4}} \right)}^{3}}=-2{{u}^{14}}{{v}^{14}}\]
Therefore, the product of \[-2{{u}^{2}}{{v}^{2}}\times {{\left( {{u}^{4}}{{v}^{4}} \right)}^{3}}\]is equals to \[-2{{u}^{14}}{{v}^{14}}\]. Hence, it is the required answer.
Note: While solving these types of questions, students need to know about the concepts of multiplication of exponents. They should remember the basic properties of exponential in order to solve the given expression. Students should be very careful while doing calculations to avoid making any errors as it will give us the wrong answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which are the Top 10 Largest States of India?

How many hours before the closure of election must class 9 social science CBSE

Define development

Explain the importance of pH in everyday life class 9 chemistry CBSE

The winter rain in Chennai is caused by A SouthWest class 9 social science CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE


