Answer
Verified
493.8k+ views
Hint: You have to find amount invested in scheme ${\text{B}}$ so assume it $x$ and use simple interest formula and what is given in question and you will find amount invested in scheme ${\text{B}}$.
For scheme ${\text{A}} \to {\text{14\% p}}{\text{.a}}$ and for scheme ${\text{B}} \to {\text{11\% p}}{\text{.a}}$
Let amount $x$ has been invested in scheme ${\text{B}}$.
So amount invested in scheme ${\text{A = 13900 - }}x$
Amount earned from simple interest in scheme ${\text{A = }}\dfrac{{\left( {13900 - x} \right) \times 14 \times 2}}{{100}}$$\left( {\because s.i = \dfrac{{p \times r \times t}}{{100}}} \right)$
Amount earned from simple interest in scheme ${\text{B = }}\dfrac{{x \times 11 \times 2}}{{100}}$
As given in question total amount earned from both scheme in two year is ${\text{R}}{\text{s}}{\text{.3508}}$
$\therefore \dfrac{{\left( {13900 - x} \right) \times 14 \times 2}}{{100}} + \dfrac{{x \times 11 \times 2}}{{100}} = 3508$
$ \Rightarrow \dfrac{{13900 \times 28 - 28x + 22x}}{{100}} = 3508$
$ \Rightarrow - 6x + 389200 = 350800$
$ \Rightarrow - 6x = - 38400 \Rightarrow x = 6400$
Hence option ${\text{A }}$is the correct option.
Note: Whenever you get this type of question the key concept of solving is if you have a principal rate and time then just apply the simple interest formula and get the answer. In this question only you have to notice the principal and use what is given in the question.
For scheme ${\text{A}} \to {\text{14\% p}}{\text{.a}}$ and for scheme ${\text{B}} \to {\text{11\% p}}{\text{.a}}$
Let amount $x$ has been invested in scheme ${\text{B}}$.
So amount invested in scheme ${\text{A = 13900 - }}x$
Amount earned from simple interest in scheme ${\text{A = }}\dfrac{{\left( {13900 - x} \right) \times 14 \times 2}}{{100}}$$\left( {\because s.i = \dfrac{{p \times r \times t}}{{100}}} \right)$
Amount earned from simple interest in scheme ${\text{B = }}\dfrac{{x \times 11 \times 2}}{{100}}$
As given in question total amount earned from both scheme in two year is ${\text{R}}{\text{s}}{\text{.3508}}$
$\therefore \dfrac{{\left( {13900 - x} \right) \times 14 \times 2}}{{100}} + \dfrac{{x \times 11 \times 2}}{{100}} = 3508$
$ \Rightarrow \dfrac{{13900 \times 28 - 28x + 22x}}{{100}} = 3508$
$ \Rightarrow - 6x + 389200 = 350800$
$ \Rightarrow - 6x = - 38400 \Rightarrow x = 6400$
Hence option ${\text{A }}$is the correct option.
Note: Whenever you get this type of question the key concept of solving is if you have a principal rate and time then just apply the simple interest formula and get the answer. In this question only you have to notice the principal and use what is given in the question.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE