
Molar conductances of \[{\text{BaC}}{{\text{l}}_2}{\text{, }}{{\text{H}}_2}{\text{S}}{{\text{O}}_4}\] and \[{\text{HCl}}\] at infinite dilution are \[{{\text{X}}_1}{\text{, }}{{\text{X}}_2}\] and \[{{\text{X}}_3}\] respectively. Molar conductance of \[{\text{BaS}}{{\text{O}}_4}\] at infinite dilution is:
A) \[{{\text{X}}_1}{\text{ + }}{{\text{X}}_2} - {{\text{X}}_3}\]
B) \[{{\text{X}}_1}{\text{ + }}{{\text{X}}_2} - 2{{\text{X}}_3}\]
C) (\[\dfrac{{{{\text{X}}_1}{\text{ + }}{{\text{X}}_2} - {{\text{X}}_3}}}{2}\]
D) \[\dfrac{{{{\text{X}}_1}{\text{ + }}{{\text{X}}_2} - 2{{\text{X}}_3}}}{2}\]
Answer
557.7k+ views
Hint:According to the Kohlrausch’s law of independent migration of ions, the equivalent conductivity of an electrolyte at infinite dilution is equal to the sum of the conductances of the anions and cations. In other words, “We can represent the limiting molar conductivity of an electrolyte as the sum of the individual contributions of the cations and anions present in the electrolyte”.
Complete step-by-step solution:
Molar conductances of \[{\text{BaC}}{{\text{l}}_2}{\text{, }}{{\text{H}}_2}{\text{S}}{{\text{O}}_4}\] and \[{\text{HCl}}\] at infinite dilution are \[{{\text{X}}_1}{\text{, }}{{\text{X}}_2}\] and \[{{\text{X}}_3}\] respectively.
\[\lambda _m^\infty {\text{BaC}}{{\text{l}}_2} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o = {X_1}\] … …(1)
\[\lambda _m^\infty {{\text{H}}_2}{\text{S}}{{\text{O}}_4} = 2\lambda _{{{\text{H}}^ + }}^o + \lambda _{{\text{SO}}_4^{2 - }}^o = {X_2}\] .. ….(2)
\[\lambda _m^\infty {\text{HCl}} = \lambda _{{{\text{H}}^ + }}^o + \lambda _{{\text{C}}{{\text{l}}^ - }}^o = {X_3}\] … …(3)
\[\lambda _m^\infty {\text{BaS}}{{\text{O}}_4} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + \lambda _{{\text{SO}}_4^{2 - }}^o\] … …(4)
Add equations (1) and (2)
\[\lambda _m^\infty {\text{BaC}}{{\text{l}}_2} + \lambda _m^\infty {{\text{H}}_2}{\text{S}}{{\text{O}}_4} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o + 2\lambda _{{{\text{H}}^ + }}^o + \lambda _{{\text{SO}}_4^{2 - }}^o = {X_1} + {X_2}\] … …(5)
Multiply equation (3) with 2.
\[2\lambda _m^\infty {\text{HCl}} = 2\lambda _{{{\text{H}}^ + }}^o + 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o = 2{X_3}\] … …(6)
Subtract equation (6) from equation (5)
\[\lambda _m^\infty {\text{BaC}}{{\text{l}}_2} + \lambda _m^\infty {{\text{H}}_2}{\text{S}}{{\text{O}}_4} - 2\lambda _m^\infty {\text{HCl}} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o + 2\lambda _{{{\text{H}}^ + }}^o + \lambda _{{\text{SO}}_4^{2 - }}^o - 2\lambda _{{{\text{H}}^ + }}^o - 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o = {X_1} + {X_2} - 2{X_3}\]
\[\lambda _m^\infty {\text{BaC}}{{\text{l}}_2} + \lambda _m^\infty {{\text{H}}_2}{\text{S}}{{\text{O}}_4} - 2\lambda _m^\infty {\text{HCl}} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + \lambda _{{\text{SO}}_4^{2 - }}^o = {X_1} + {X_2} - 2{X_3}\] … …(7)
The equation (7) and the equation (4) are one and the same
Hence, molar conductance of \[{\text{BaS}}{{\text{O}}_4}\] at infinite dilution is \[{{\text{X}}_1}{\text{ + }}{{\text{X}}_2} - 2{{\text{X}}_3}\] .
Hence, the correct answer is option (B).
Note:We can call the molar conductivity as the conductance of the given volume of electrolyte having one mole of electrolyte. The solution is kept between two electrodes. The electrodes have unit area of cross-section and distance of unit length. We can call the molar conductive as limiting molar conductivity if the concentration of the electrolyte is nearly zero.
Complete step-by-step solution:
Molar conductances of \[{\text{BaC}}{{\text{l}}_2}{\text{, }}{{\text{H}}_2}{\text{S}}{{\text{O}}_4}\] and \[{\text{HCl}}\] at infinite dilution are \[{{\text{X}}_1}{\text{, }}{{\text{X}}_2}\] and \[{{\text{X}}_3}\] respectively.
\[\lambda _m^\infty {\text{BaC}}{{\text{l}}_2} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o = {X_1}\] … …(1)
\[\lambda _m^\infty {{\text{H}}_2}{\text{S}}{{\text{O}}_4} = 2\lambda _{{{\text{H}}^ + }}^o + \lambda _{{\text{SO}}_4^{2 - }}^o = {X_2}\] .. ….(2)
\[\lambda _m^\infty {\text{HCl}} = \lambda _{{{\text{H}}^ + }}^o + \lambda _{{\text{C}}{{\text{l}}^ - }}^o = {X_3}\] … …(3)
\[\lambda _m^\infty {\text{BaS}}{{\text{O}}_4} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + \lambda _{{\text{SO}}_4^{2 - }}^o\] … …(4)
Add equations (1) and (2)
\[\lambda _m^\infty {\text{BaC}}{{\text{l}}_2} + \lambda _m^\infty {{\text{H}}_2}{\text{S}}{{\text{O}}_4} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o + 2\lambda _{{{\text{H}}^ + }}^o + \lambda _{{\text{SO}}_4^{2 - }}^o = {X_1} + {X_2}\] … …(5)
Multiply equation (3) with 2.
\[2\lambda _m^\infty {\text{HCl}} = 2\lambda _{{{\text{H}}^ + }}^o + 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o = 2{X_3}\] … …(6)
Subtract equation (6) from equation (5)
\[\lambda _m^\infty {\text{BaC}}{{\text{l}}_2} + \lambda _m^\infty {{\text{H}}_2}{\text{S}}{{\text{O}}_4} - 2\lambda _m^\infty {\text{HCl}} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o + 2\lambda _{{{\text{H}}^ + }}^o + \lambda _{{\text{SO}}_4^{2 - }}^o - 2\lambda _{{{\text{H}}^ + }}^o - 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o = {X_1} + {X_2} - 2{X_3}\]
\[\lambda _m^\infty {\text{BaC}}{{\text{l}}_2} + \lambda _m^\infty {{\text{H}}_2}{\text{S}}{{\text{O}}_4} - 2\lambda _m^\infty {\text{HCl}} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + \lambda _{{\text{SO}}_4^{2 - }}^o = {X_1} + {X_2} - 2{X_3}\] … …(7)
The equation (7) and the equation (4) are one and the same
Hence, molar conductance of \[{\text{BaS}}{{\text{O}}_4}\] at infinite dilution is \[{{\text{X}}_1}{\text{ + }}{{\text{X}}_2} - 2{{\text{X}}_3}\] .
Hence, the correct answer is option (B).
Note:We can call the molar conductivity as the conductance of the given volume of electrolyte having one mole of electrolyte. The solution is kept between two electrodes. The electrodes have unit area of cross-section and distance of unit length. We can call the molar conductive as limiting molar conductivity if the concentration of the electrolyte is nearly zero.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

