
What is the maximum energy of the anti- neutrino?
A. zero
B. Much less than $0.8 \times {10^6}{\text{eV}}$
C. Nearly $0.8 \times {10^6}{\text{eV}}$
D. much larger than $0.8 \times {10^6}{\text{eV}}$
Answer
584.1k+ views
Hint: Using Einstein’s mass energy equation,$E = m{c^2}$solve the given problem.
Formula used: ${m_n}{c^2} = {m_p}{c^2} + {m_e}{c^2} + {m_{an}}{c^2}$
Complete step-by-step answer:
We can consider the Einstein’s mass- energy relation,
The beta decay is a negative process.
The negative $\beta $-decay, $n \to p + e_{ - 1}^0 + \overline \nu $
${m_n}{c^2} = {m_p}{c^2} + {m_e}{c^2} + {m_{an}}{c^2}$
${{\text{m}}_{an}}{{\text{c}}^2} = ({m_n} - {m_p} - {m_e}){c^2}$
${\text{ = (1}}{\text{.00866u - 1}}{\text{.00727 - 0}}{\text{.00055u)}}{c^2}$
${\text{ = }}0.00084u{c^2}$
${\text{ = 0}}{\text{.00084}} \times {\text{931}}{\text{.5MeV}}$
${m_{an}}{c^2} = 0.78 \times {10^6}{\text{eV}}$
Which is less than $0.8 \times {10^6}{\text{eV}}$.
From the above equation we found the value for the maximum energy of the anti-neutrino.
Therefore, answer is (B) Much less than $0.8 \times {10^6}{\text{eV}}$.
Additional information:
There are three types of the decay process
Alpha decay
Beta decay
Gamma decay
The process of emission of an electron or positron from a radioactive nucleus is called the $\beta - {\text{decay}}$.
When a nucleus emits a $\beta - $particle (electron or positron), the mass number A of the nucleus does not change but its atomic number Z increases by 1. Therefore, $\beta - {\text{decay}}$can be represented as:
\[{\text{X}}_Z^A \to {\text{Y}}_{Z + 1}^A + e_{ - 1}^0 + Q\]
where Q represents the maximum kinetic energy with which the $\beta $- particles are emitted.$Q = \left( {{m_x} - {m_y}} \right){c^2}$
According to the above relation all -particles must be emitted with the same kinetic energy. But the experiments showed that only a few -particles are emitted with the maximum kinetic energy. A large number of - particles are emitted with a small value of the kinetic energy. Thus, there is an apparent break or violation of the law of conservation of mass-energy. To overcome this difficulty Pauli proposed a theory called the “neutrino hypothesis”.
According to this hypothesis, there must exist another particle called “neutrino” to account for the missing energy and momentum. Therefore, in a negative -decay, a neutron is transformed into a proton, electron, and an anti-neutrino. That is, Similarly, in a positive -decay, a proton is transferred into a neutron, positron, and a neutrino. That is,
Neutrinos are neutral particles with very small mass compared to the electron. They have only weak interactions with other particles. Therefore, they are very difficult to detect.
Note: By learning the atomic mass unit of all the fundamental particles the above problem can be solved.
${m_n}{c^2} = {m_p}{c^2} + {m_e}{c^2} + {m_{an}}{c^2}$
${{\text{m}}_{an}}{{\text{c}}^2} = ({m_n} - {m_p} - {m_e}){c^2}$
${\text{ = (1}}{\text{.00866u - 1}}{\text{.00727 - 0}}{\text{.00055u)}}{c^2}$
${\text{ = }}0.00084u{c^2}$
${\text{ = 0}}{\text{.00084}} \times {\text{931}}{\text{.5MeV}}$
${m_{an}}{c^2} = 0.78 \times {10^6}{\text{eV}}$
Formula used: ${m_n}{c^2} = {m_p}{c^2} + {m_e}{c^2} + {m_{an}}{c^2}$
Complete step-by-step answer:
We can consider the Einstein’s mass- energy relation,
The beta decay is a negative process.
The negative $\beta $-decay, $n \to p + e_{ - 1}^0 + \overline \nu $
${m_n}{c^2} = {m_p}{c^2} + {m_e}{c^2} + {m_{an}}{c^2}$
${{\text{m}}_{an}}{{\text{c}}^2} = ({m_n} - {m_p} - {m_e}){c^2}$
${\text{ = (1}}{\text{.00866u - 1}}{\text{.00727 - 0}}{\text{.00055u)}}{c^2}$
${\text{ = }}0.00084u{c^2}$
${\text{ = 0}}{\text{.00084}} \times {\text{931}}{\text{.5MeV}}$
${m_{an}}{c^2} = 0.78 \times {10^6}{\text{eV}}$
Which is less than $0.8 \times {10^6}{\text{eV}}$.
From the above equation we found the value for the maximum energy of the anti-neutrino.
Therefore, answer is (B) Much less than $0.8 \times {10^6}{\text{eV}}$.
Additional information:
There are three types of the decay process
Alpha decay
Beta decay
Gamma decay
The process of emission of an electron or positron from a radioactive nucleus is called the $\beta - {\text{decay}}$.
When a nucleus emits a $\beta - $particle (electron or positron), the mass number A of the nucleus does not change but its atomic number Z increases by 1. Therefore, $\beta - {\text{decay}}$can be represented as:
\[{\text{X}}_Z^A \to {\text{Y}}_{Z + 1}^A + e_{ - 1}^0 + Q\]
where Q represents the maximum kinetic energy with which the $\beta $- particles are emitted.$Q = \left( {{m_x} - {m_y}} \right){c^2}$
According to the above relation all -particles must be emitted with the same kinetic energy. But the experiments showed that only a few -particles are emitted with the maximum kinetic energy. A large number of - particles are emitted with a small value of the kinetic energy. Thus, there is an apparent break or violation of the law of conservation of mass-energy. To overcome this difficulty Pauli proposed a theory called the “neutrino hypothesis”.
According to this hypothesis, there must exist another particle called “neutrino” to account for the missing energy and momentum. Therefore, in a negative -decay, a neutron is transformed into a proton, electron, and an anti-neutrino. That is, Similarly, in a positive -decay, a proton is transferred into a neutron, positron, and a neutrino. That is,
Neutrinos are neutral particles with very small mass compared to the electron. They have only weak interactions with other particles. Therefore, they are very difficult to detect.
Note: By learning the atomic mass unit of all the fundamental particles the above problem can be solved.
${m_n}{c^2} = {m_p}{c^2} + {m_e}{c^2} + {m_{an}}{c^2}$
${{\text{m}}_{an}}{{\text{c}}^2} = ({m_n} - {m_p} - {m_e}){c^2}$
${\text{ = (1}}{\text{.00866u - 1}}{\text{.00727 - 0}}{\text{.00055u)}}{c^2}$
${\text{ = }}0.00084u{c^2}$
${\text{ = 0}}{\text{.00084}} \times {\text{931}}{\text{.5MeV}}$
${m_{an}}{c^2} = 0.78 \times {10^6}{\text{eV}}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

