
Match the following columns:
Answer
604.8k+ views
Hint: To match the columns, simplify the functions given on the right hand side using the properties of inverse functions in the given range and domain and then differentiate them to get the exact values and then match them with the right hand side.
Complete step-by-step answer:
We have three different kinds of functions on the right side of the table. We want to find their derivative. We will begin by simplifying the given functions in their possible domain and range and then finding their first derivative.
We have the function \[y={{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)\]. We know that the domain of \[y={{\sin }^{-1}}x\] is \[\left[ -1,1 \right]\] and its range is \[\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\].
Thus, by substituting \[x=\tan \theta \] we get
\[y={{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)=2{{\tan }^{-1}}x\] if \[\left| x \right|\le 1\]
\[=\pi -2{{\tan }^{-1}}x\] if \[x>1\]
\[=-\left( \pi +2{{\tan }^{-1}}x \right)\] if \[x<-1\]
We know that the first derivative of \[y=a{{\tan }^{-1}}x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{1+{{x}^{2}}}\] .
If \[\left| x \right|<1\], we have \[y={{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)=2{{\tan }^{-1}}x\], thus \[\dfrac{dy}{dx}=\dfrac{2}{1+{{x}^{2}}}\].
If \[\left| x \right|>1\], we have \[y={{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)=\pm \pi -2{{\tan }^{-1}}x\], thus \[\dfrac{dy}{dx}=\dfrac{-2}{1+{{x}^{2}}}\].
Thus, for (a) the correct options are (p), (s).
We have the function \[y={{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)\]. We know that the domain of \[y={{\cos }^{-1}}x\] is \[\left[ -1,1 \right]\] and its range is \[\left[ 0,\pi \right]\].
Thus, by substituting \[x=\tan \theta \] we get
\[y={{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)=2{{\tan }^{-1}}x\] if \[x\ge 0\]
\[=-2{{\tan }^{-1}}x\] if \[x<0\]
We know that the first derivative of \[y=a{{\tan }^{-1}}x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{1+{{x}^{2}}}\] .
If \[x<0\], we have \[y={{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)=-2{{\tan }^{-1}}x\], thus \[\dfrac{dy}{dx}=\dfrac{-2}{1+{{x}^{2}}}\].
If \[x\ge 0\], we have \[y={{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)=2{{\tan }^{-1}}x\], thus \[\dfrac{dy}{dx}=\dfrac{2}{1+{{x}^{2}}}\].
Thus, for (b) the correct option is (r).
We have the function \[y={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\]. We know that the domain of \[y={{\tan }^{-1}}x\] is \[\mathbb{R}\] and its range is \[\left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\].
Thus, by substituting \[x=\tan \theta \] we get
\[y={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)=2{{\tan }^{-1}}x\] if \[\left| x \right|<1\]
\[=-\pi +2{{\tan }^{-1}}x\] if \[x>1\]
\[=\pi +2{{\tan }^{-1}}x\] if \[x<-1\]
We know that the first derivative of \[y=a{{\tan }^{-1}}x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{1+{{x}^{2}}}\] .
If \[\left| x \right|<1\], we have \[y={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)=2{{\tan }^{-1}}x\], thus \[\dfrac{dy}{dx}=\dfrac{2}{1+{{x}^{2}}}\].
If \[\left| x \right|>1\], we have \[y={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)=\pm \pi +2{{\tan }^{-1}}x\], thus \[\dfrac{dy}{dx}=\dfrac{2}{1+{{x}^{2}}}\].
Also, the function \[y={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\] is non-existent for \[\left| x \right|=1\].
Thus, for (c) the correct options are (p), (q) and (t).
Note: It’s necessary to keep in mind the possible domain and range of the given inverse functions. The functions show different behaviour in different values of domain and range. If we don’t keep the domain and range in mind, we will get an incorrect answer.
Complete step-by-step answer:
We have three different kinds of functions on the right side of the table. We want to find their derivative. We will begin by simplifying the given functions in their possible domain and range and then finding their first derivative.
We have the function \[y={{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)\]. We know that the domain of \[y={{\sin }^{-1}}x\] is \[\left[ -1,1 \right]\] and its range is \[\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\].
Thus, by substituting \[x=\tan \theta \] we get
\[y={{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)=2{{\tan }^{-1}}x\] if \[\left| x \right|\le 1\]
\[=\pi -2{{\tan }^{-1}}x\] if \[x>1\]
\[=-\left( \pi +2{{\tan }^{-1}}x \right)\] if \[x<-1\]
We know that the first derivative of \[y=a{{\tan }^{-1}}x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{1+{{x}^{2}}}\] .
If \[\left| x \right|<1\], we have \[y={{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)=2{{\tan }^{-1}}x\], thus \[\dfrac{dy}{dx}=\dfrac{2}{1+{{x}^{2}}}\].
If \[\left| x \right|>1\], we have \[y={{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)=\pm \pi -2{{\tan }^{-1}}x\], thus \[\dfrac{dy}{dx}=\dfrac{-2}{1+{{x}^{2}}}\].
Thus, for (a) the correct options are (p), (s).
We have the function \[y={{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)\]. We know that the domain of \[y={{\cos }^{-1}}x\] is \[\left[ -1,1 \right]\] and its range is \[\left[ 0,\pi \right]\].
Thus, by substituting \[x=\tan \theta \] we get
\[y={{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)=2{{\tan }^{-1}}x\] if \[x\ge 0\]
\[=-2{{\tan }^{-1}}x\] if \[x<0\]
We know that the first derivative of \[y=a{{\tan }^{-1}}x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{1+{{x}^{2}}}\] .
If \[x<0\], we have \[y={{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)=-2{{\tan }^{-1}}x\], thus \[\dfrac{dy}{dx}=\dfrac{-2}{1+{{x}^{2}}}\].
If \[x\ge 0\], we have \[y={{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)=2{{\tan }^{-1}}x\], thus \[\dfrac{dy}{dx}=\dfrac{2}{1+{{x}^{2}}}\].
Thus, for (b) the correct option is (r).
We have the function \[y={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\]. We know that the domain of \[y={{\tan }^{-1}}x\] is \[\mathbb{R}\] and its range is \[\left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\].
Thus, by substituting \[x=\tan \theta \] we get
\[y={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)=2{{\tan }^{-1}}x\] if \[\left| x \right|<1\]
\[=-\pi +2{{\tan }^{-1}}x\] if \[x>1\]
\[=\pi +2{{\tan }^{-1}}x\] if \[x<-1\]
We know that the first derivative of \[y=a{{\tan }^{-1}}x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{1+{{x}^{2}}}\] .
If \[\left| x \right|<1\], we have \[y={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)=2{{\tan }^{-1}}x\], thus \[\dfrac{dy}{dx}=\dfrac{2}{1+{{x}^{2}}}\].
If \[\left| x \right|>1\], we have \[y={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)=\pm \pi +2{{\tan }^{-1}}x\], thus \[\dfrac{dy}{dx}=\dfrac{2}{1+{{x}^{2}}}\].
Also, the function \[y={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\] is non-existent for \[\left| x \right|=1\].
Thus, for (c) the correct options are (p), (q) and (t).
Note: It’s necessary to keep in mind the possible domain and range of the given inverse functions. The functions show different behaviour in different values of domain and range. If we don’t keep the domain and range in mind, we will get an incorrect answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

