
Magnet field at the center (at nucleus) of the hydrogen-like atoms (atomic number $ = {\text{Z}}$ ) due to the motion of electron in ${{\text{n}}^{{\text{th}}}}$ orbit is proportional to
A. $\dfrac{{{{\text{n}}^3}}}{{{{\text{z}}^5}}}$
B. $\dfrac{{{{\text{n}}^4}}}{{\text{z}}}$
C. $\dfrac{{{{\text{z}}^2}}}{{{{\text{n}}^3}}}$
D. $\dfrac{{{{\text{z}}^3}}}{{{{\text{n}}^5}}}$
Answer
490.5k+ views
Hint:In this question analyse angular momentum equation. Solve force equation that is ${\text{F = }}{{\text{m}}_{\text{e}}}{{\text{a}}_{\text{n}}}$ and the equation given by the coulomb law equation. After that write the current equation with the amount of charge flowing in given time and then magnetic field equation to get the answer.
Complete step by step answer:
Angular momentum equation of the given
${{\text{m}}_{\text{e}}}{\omega _{\text{n}}}{{\text{r}}_{\text{n}}}^{\text{2}} = \dfrac{{{\text{nh}}}}{{2\pi }}\,\,\,.......(i)$
Force equation:
${\text{F}}\,{\text{ = }}\,{{\text{m}}_{\text{e}}}{{\text{a}}_{\text{n}}}\, = \,\dfrac{{{\text{K}}{{\text{q}}_{\text{e}}}^2}}{{{{\text{r}}_{\text{n}}}^{\text{2}}}}$
$ \Rightarrow {{\text{a}}_{\text{n}}}\, = \,\dfrac{{{\text{K}}{{\text{q}}_{\text{e}}}^2}}{{{{\text{m}}_{\text{e}}}{{\text{r}}_{\text{n}}}^{\text{2}}}}\, = \,{\omega _{\text{n}}}^2{{\text{r}}_{\text{n}}}$
Now put ${\text{K}}\,{\text{ = }}\,\dfrac{1}{{{\text{4}}\pi {\varepsilon _0}}}$ in above equation
${\omega _{\text{n}}}^2{{\text{r}}_{\text{n}}}\, = \,\dfrac{{{{\text{q}}_{\text{e}}}^2}}{{{\text{4}}\pi {\varepsilon _0}{{\text{m}}_{\text{e}}}{{\text{r}}_{\text{n}}}^{\text{2}}}}\,\,\,\,\,......(ii)$
Solving $(i)$ and $(ii)$ we get:
${\omega _{\text{n}}}\, = \,\dfrac{{{{\text{m}}_{\text{e}}}{{\text{q}}_{\text{e}}}^4\pi }}{{2{{\text{n}}^3}{{\text{h}}^3}{\varepsilon _0}^2}}$
and ${{\text{r}}_{\text{n}}}\, = \,\dfrac{{{{\text{n}}^2}{{\text{h}}^2}{\varepsilon _0}}}{{{{\text{q}}_{\text{e}}}^2{{\text{m}}_{\text{e}}}\pi }}$
Now write the relation of current, charge and time:
${\text{I}}\,{\text{ = }}\,{{\text{q}}_{\text{e}}}\dfrac{{{\omega _{\text{n}}}}}{{2\pi }}\, = \,\,\dfrac{{{{\text{m}}_{\text{e}}}{{\text{q}}_{\text{e}}}^5}}{{{\text{4}}{{\text{n}}^3}{{\text{h}}^3}{\varepsilon _0}^2}}$
By writing the equation of magnetic field we get:
${\text{B = }}{\mu _0}\dfrac{{\text{I}}}{{2{{\text{r}}_{\text{n}}}}}$
$ \therefore {\text{B = }}\dfrac{{{\mu _0}{{\text{m}}_{\text{e}}}^2{{\text{q}}_{\text{e}}}^7\pi }}{{{\text{8}}{{\text{n}}^5}{{\text{h}}^5}{\varepsilon _0}^3}}\,\,\,\,.....(iii)$
Hence, the correct option is D.
Note:Motion of electrons around the hydrogen atom produces a magnetic field at the center of the atom. Due to the continuous movement of the charges magnetic field is generated which we can calculate as above. This magnetic field value depends on the electron’s orbital number.
Complete step by step answer:
Angular momentum equation of the given
${{\text{m}}_{\text{e}}}{\omega _{\text{n}}}{{\text{r}}_{\text{n}}}^{\text{2}} = \dfrac{{{\text{nh}}}}{{2\pi }}\,\,\,.......(i)$
Force equation:
${\text{F}}\,{\text{ = }}\,{{\text{m}}_{\text{e}}}{{\text{a}}_{\text{n}}}\, = \,\dfrac{{{\text{K}}{{\text{q}}_{\text{e}}}^2}}{{{{\text{r}}_{\text{n}}}^{\text{2}}}}$
$ \Rightarrow {{\text{a}}_{\text{n}}}\, = \,\dfrac{{{\text{K}}{{\text{q}}_{\text{e}}}^2}}{{{{\text{m}}_{\text{e}}}{{\text{r}}_{\text{n}}}^{\text{2}}}}\, = \,{\omega _{\text{n}}}^2{{\text{r}}_{\text{n}}}$
Now put ${\text{K}}\,{\text{ = }}\,\dfrac{1}{{{\text{4}}\pi {\varepsilon _0}}}$ in above equation
${\omega _{\text{n}}}^2{{\text{r}}_{\text{n}}}\, = \,\dfrac{{{{\text{q}}_{\text{e}}}^2}}{{{\text{4}}\pi {\varepsilon _0}{{\text{m}}_{\text{e}}}{{\text{r}}_{\text{n}}}^{\text{2}}}}\,\,\,\,\,......(ii)$
Solving $(i)$ and $(ii)$ we get:
${\omega _{\text{n}}}\, = \,\dfrac{{{{\text{m}}_{\text{e}}}{{\text{q}}_{\text{e}}}^4\pi }}{{2{{\text{n}}^3}{{\text{h}}^3}{\varepsilon _0}^2}}$
and ${{\text{r}}_{\text{n}}}\, = \,\dfrac{{{{\text{n}}^2}{{\text{h}}^2}{\varepsilon _0}}}{{{{\text{q}}_{\text{e}}}^2{{\text{m}}_{\text{e}}}\pi }}$
Now write the relation of current, charge and time:
${\text{I}}\,{\text{ = }}\,{{\text{q}}_{\text{e}}}\dfrac{{{\omega _{\text{n}}}}}{{2\pi }}\, = \,\,\dfrac{{{{\text{m}}_{\text{e}}}{{\text{q}}_{\text{e}}}^5}}{{{\text{4}}{{\text{n}}^3}{{\text{h}}^3}{\varepsilon _0}^2}}$
By writing the equation of magnetic field we get:
${\text{B = }}{\mu _0}\dfrac{{\text{I}}}{{2{{\text{r}}_{\text{n}}}}}$
$ \therefore {\text{B = }}\dfrac{{{\mu _0}{{\text{m}}_{\text{e}}}^2{{\text{q}}_{\text{e}}}^7\pi }}{{{\text{8}}{{\text{n}}^5}{{\text{h}}^5}{\varepsilon _0}^3}}\,\,\,\,.....(iii)$
Hence, the correct option is D.
Note:Motion of electrons around the hydrogen atom produces a magnetic field at the center of the atom. Due to the continuous movement of the charges magnetic field is generated which we can calculate as above. This magnetic field value depends on the electron’s orbital number.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

