
What is the locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line \[4x - 5y = 20\] to the circle \[{x^2} + {y^2} = 9\]?
(a). \[20({x^2} + {y^2}) - 36x + 45y = 0\]
(b). \[20({x^2} + {y^2}) + 36x - 45y = 0\]
(c). \[20({x^2} + {y^2}) - 20x + 45y = 0\]
(d). \[20({x^2} + {y^2}) + 20x - 45y = 0\]
Answer
602.1k+ views
Hint: Determine the tangent and the chord of contact of the tangents from the point (h, k) that lies of the line \[4x - 5y = 20\]. Assume (a, b) to be the midpoint of the chord. Find the relation between a and b, and replace a and b with x and y respectively.
Complete step-by-step answer:
We need to find the locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line \[4x - 5y = 20\] to the circle \[{x^2} + {y^2} = 9\].
Consider a point (h, k) on the line \[4x - 5y = 20\], then, we have:
\[4h - 5k = 20.............(1)\]
The equation of chord of contact of the tangents to the circle \[{x^2} + {y^2} = 9\] from a point (a, b) outside the circle is given by:
\[ax + by = 9\]
The equations of chord of contact of the tangents from the point (h, k) to the circle \[{x^2} + {y^2} = 9\] is then given as follows:
\[hx + ky = 9..........(2)\]
Let (a, b) be the mid-point of the chord of contact of the tangents.
Then, the equation of the chord with the midpoint (a, b) is given as follows:
\[ax + by = {a^2} + {b^2}..........(3)\]
Line in equation (2) and equation (3) are the same. Hence, we have:
\[\dfrac{h}{a} = \dfrac{k}{b} = \dfrac{9}{{{a^2} + {b^2}}}\]
The value of h in terms of a and b is given by:
\[h = \dfrac{{9a}}{{{a^2} + {b^2}}}..........(4)\]
The value of k in terms of a and b is given by,
\[k = \dfrac{{9b}}{{{a^2} + {b^2}}}..........(5)\]
Substituting equations (4) and (5) in equation (1), we have:
\[4\left( {\dfrac{{9a}}{{{a^2} + {b^2}}}} \right) - 5\left( {\dfrac{{9b}}{{{a^2} + {b^2}}}} \right) = 20\]
Simplifying, we get:
\[36a - 45b = 20({a^2} + {b^2})\]
\[20({a^2} + {b^2}) - 36a + 45b = 0\]
Replacing a and b with x and y respectively, we get:
\[20({x^2} + {y^2}) - 36x + 45y = 0\]
Hence, the correct answer is option (a).
Note: The equation of the chord with a midpoint (a, b) is \[ax + by = {a^2} + {b^2}\]. The equation of the chord of contact of tangents drawn from the point (h, k) outside the circle \[{x^2} + {y^2} = {a^2}\] is \[hx + ky = {a^2}\].
Complete step-by-step answer:
We need to find the locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line \[4x - 5y = 20\] to the circle \[{x^2} + {y^2} = 9\].
Consider a point (h, k) on the line \[4x - 5y = 20\], then, we have:
\[4h - 5k = 20.............(1)\]
The equation of chord of contact of the tangents to the circle \[{x^2} + {y^2} = 9\] from a point (a, b) outside the circle is given by:
\[ax + by = 9\]
The equations of chord of contact of the tangents from the point (h, k) to the circle \[{x^2} + {y^2} = 9\] is then given as follows:
\[hx + ky = 9..........(2)\]
Let (a, b) be the mid-point of the chord of contact of the tangents.
Then, the equation of the chord with the midpoint (a, b) is given as follows:
\[ax + by = {a^2} + {b^2}..........(3)\]
Line in equation (2) and equation (3) are the same. Hence, we have:
\[\dfrac{h}{a} = \dfrac{k}{b} = \dfrac{9}{{{a^2} + {b^2}}}\]
The value of h in terms of a and b is given by:
\[h = \dfrac{{9a}}{{{a^2} + {b^2}}}..........(4)\]
The value of k in terms of a and b is given by,
\[k = \dfrac{{9b}}{{{a^2} + {b^2}}}..........(5)\]
Substituting equations (4) and (5) in equation (1), we have:
\[4\left( {\dfrac{{9a}}{{{a^2} + {b^2}}}} \right) - 5\left( {\dfrac{{9b}}{{{a^2} + {b^2}}}} \right) = 20\]
Simplifying, we get:
\[36a - 45b = 20({a^2} + {b^2})\]
\[20({a^2} + {b^2}) - 36a + 45b = 0\]
Replacing a and b with x and y respectively, we get:
\[20({x^2} + {y^2}) - 36x + 45y = 0\]
Hence, the correct answer is option (a).
Note: The equation of the chord with a midpoint (a, b) is \[ax + by = {a^2} + {b^2}\]. The equation of the chord of contact of tangents drawn from the point (h, k) outside the circle \[{x^2} + {y^2} = {a^2}\] is \[hx + ky = {a^2}\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

