
What is the locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line \[4x - 5y = 20\] to the circle \[{x^2} + {y^2} = 9\]?
(a). \[20({x^2} + {y^2}) - 36x + 45y = 0\]
(b). \[20({x^2} + {y^2}) + 36x - 45y = 0\]
(c). \[20({x^2} + {y^2}) - 20x + 45y = 0\]
(d). \[20({x^2} + {y^2}) + 20x - 45y = 0\]
Answer
601.8k+ views
Hint: Determine the tangent and the chord of contact of the tangents from the point (h, k) that lies of the line \[4x - 5y = 20\]. Assume (a, b) to be the midpoint of the chord. Find the relation between a and b, and replace a and b with x and y respectively.
Complete step-by-step answer:
We need to find the locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line \[4x - 5y = 20\] to the circle \[{x^2} + {y^2} = 9\].
Consider a point (h, k) on the line \[4x - 5y = 20\], then, we have:
\[4h - 5k = 20.............(1)\]
The equation of chord of contact of the tangents to the circle \[{x^2} + {y^2} = 9\] from a point (a, b) outside the circle is given by:
\[ax + by = 9\]
The equations of chord of contact of the tangents from the point (h, k) to the circle \[{x^2} + {y^2} = 9\] is then given as follows:
\[hx + ky = 9..........(2)\]
Let (a, b) be the mid-point of the chord of contact of the tangents.
Then, the equation of the chord with the midpoint (a, b) is given as follows:
\[ax + by = {a^2} + {b^2}..........(3)\]
Line in equation (2) and equation (3) are the same. Hence, we have:
\[\dfrac{h}{a} = \dfrac{k}{b} = \dfrac{9}{{{a^2} + {b^2}}}\]
The value of h in terms of a and b is given by:
\[h = \dfrac{{9a}}{{{a^2} + {b^2}}}..........(4)\]
The value of k in terms of a and b is given by,
\[k = \dfrac{{9b}}{{{a^2} + {b^2}}}..........(5)\]
Substituting equations (4) and (5) in equation (1), we have:
\[4\left( {\dfrac{{9a}}{{{a^2} + {b^2}}}} \right) - 5\left( {\dfrac{{9b}}{{{a^2} + {b^2}}}} \right) = 20\]
Simplifying, we get:
\[36a - 45b = 20({a^2} + {b^2})\]
\[20({a^2} + {b^2}) - 36a + 45b = 0\]
Replacing a and b with x and y respectively, we get:
\[20({x^2} + {y^2}) - 36x + 45y = 0\]
Hence, the correct answer is option (a).
Note: The equation of the chord with a midpoint (a, b) is \[ax + by = {a^2} + {b^2}\]. The equation of the chord of contact of tangents drawn from the point (h, k) outside the circle \[{x^2} + {y^2} = {a^2}\] is \[hx + ky = {a^2}\].
Complete step-by-step answer:
We need to find the locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line \[4x - 5y = 20\] to the circle \[{x^2} + {y^2} = 9\].
Consider a point (h, k) on the line \[4x - 5y = 20\], then, we have:
\[4h - 5k = 20.............(1)\]
The equation of chord of contact of the tangents to the circle \[{x^2} + {y^2} = 9\] from a point (a, b) outside the circle is given by:
\[ax + by = 9\]
The equations of chord of contact of the tangents from the point (h, k) to the circle \[{x^2} + {y^2} = 9\] is then given as follows:
\[hx + ky = 9..........(2)\]
Let (a, b) be the mid-point of the chord of contact of the tangents.
Then, the equation of the chord with the midpoint (a, b) is given as follows:
\[ax + by = {a^2} + {b^2}..........(3)\]
Line in equation (2) and equation (3) are the same. Hence, we have:
\[\dfrac{h}{a} = \dfrac{k}{b} = \dfrac{9}{{{a^2} + {b^2}}}\]
The value of h in terms of a and b is given by:
\[h = \dfrac{{9a}}{{{a^2} + {b^2}}}..........(4)\]
The value of k in terms of a and b is given by,
\[k = \dfrac{{9b}}{{{a^2} + {b^2}}}..........(5)\]
Substituting equations (4) and (5) in equation (1), we have:
\[4\left( {\dfrac{{9a}}{{{a^2} + {b^2}}}} \right) - 5\left( {\dfrac{{9b}}{{{a^2} + {b^2}}}} \right) = 20\]
Simplifying, we get:
\[36a - 45b = 20({a^2} + {b^2})\]
\[20({a^2} + {b^2}) - 36a + 45b = 0\]
Replacing a and b with x and y respectively, we get:
\[20({x^2} + {y^2}) - 36x + 45y = 0\]
Hence, the correct answer is option (a).
Note: The equation of the chord with a midpoint (a, b) is \[ax + by = {a^2} + {b^2}\]. The equation of the chord of contact of tangents drawn from the point (h, k) outside the circle \[{x^2} + {y^2} = {a^2}\] is \[hx + ky = {a^2}\].
Recently Updated Pages
Write the different methods of doping a semiconduc class 12 physics CBSE

The Ajanta caves were built during the period of the class 12 social science CBSE

Describe the stages in the life cycle of silkworm class 12 biology CBSE

What is the depletion region in pn junction class 12 physics CBSE

If we cross purebred tall dominant pea plant with purebred class 12 biology CBSE

The focal length of a plane mirror is a Positive b class 12 physics CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

