
What is the locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line \[4x - 5y = 20\] to the circle \[{x^2} + {y^2} = 9\]?
(a). \[20({x^2} + {y^2}) - 36x + 45y = 0\]
(b). \[20({x^2} + {y^2}) + 36x - 45y = 0\]
(c). \[20({x^2} + {y^2}) - 20x + 45y = 0\]
(d). \[20({x^2} + {y^2}) + 20x - 45y = 0\]
Answer
605.1k+ views
Hint: Determine the tangent and the chord of contact of the tangents from the point (h, k) that lies of the line \[4x - 5y = 20\]. Assume (a, b) to be the midpoint of the chord. Find the relation between a and b, and replace a and b with x and y respectively.
Complete step-by-step answer:
We need to find the locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line \[4x - 5y = 20\] to the circle \[{x^2} + {y^2} = 9\].
Consider a point (h, k) on the line \[4x - 5y = 20\], then, we have:
\[4h - 5k = 20.............(1)\]
The equation of chord of contact of the tangents to the circle \[{x^2} + {y^2} = 9\] from a point (a, b) outside the circle is given by:
\[ax + by = 9\]
The equations of chord of contact of the tangents from the point (h, k) to the circle \[{x^2} + {y^2} = 9\] is then given as follows:
\[hx + ky = 9..........(2)\]
Let (a, b) be the mid-point of the chord of contact of the tangents.
Then, the equation of the chord with the midpoint (a, b) is given as follows:
\[ax + by = {a^2} + {b^2}..........(3)\]
Line in equation (2) and equation (3) are the same. Hence, we have:
\[\dfrac{h}{a} = \dfrac{k}{b} = \dfrac{9}{{{a^2} + {b^2}}}\]
The value of h in terms of a and b is given by:
\[h = \dfrac{{9a}}{{{a^2} + {b^2}}}..........(4)\]
The value of k in terms of a and b is given by,
\[k = \dfrac{{9b}}{{{a^2} + {b^2}}}..........(5)\]
Substituting equations (4) and (5) in equation (1), we have:
\[4\left( {\dfrac{{9a}}{{{a^2} + {b^2}}}} \right) - 5\left( {\dfrac{{9b}}{{{a^2} + {b^2}}}} \right) = 20\]
Simplifying, we get:
\[36a - 45b = 20({a^2} + {b^2})\]
\[20({a^2} + {b^2}) - 36a + 45b = 0\]
Replacing a and b with x and y respectively, we get:
\[20({x^2} + {y^2}) - 36x + 45y = 0\]
Hence, the correct answer is option (a).
Note: The equation of the chord with a midpoint (a, b) is \[ax + by = {a^2} + {b^2}\]. The equation of the chord of contact of tangents drawn from the point (h, k) outside the circle \[{x^2} + {y^2} = {a^2}\] is \[hx + ky = {a^2}\].
Complete step-by-step answer:
We need to find the locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line \[4x - 5y = 20\] to the circle \[{x^2} + {y^2} = 9\].
Consider a point (h, k) on the line \[4x - 5y = 20\], then, we have:
\[4h - 5k = 20.............(1)\]
The equation of chord of contact of the tangents to the circle \[{x^2} + {y^2} = 9\] from a point (a, b) outside the circle is given by:
\[ax + by = 9\]
The equations of chord of contact of the tangents from the point (h, k) to the circle \[{x^2} + {y^2} = 9\] is then given as follows:
\[hx + ky = 9..........(2)\]
Let (a, b) be the mid-point of the chord of contact of the tangents.
Then, the equation of the chord with the midpoint (a, b) is given as follows:
\[ax + by = {a^2} + {b^2}..........(3)\]
Line in equation (2) and equation (3) are the same. Hence, we have:
\[\dfrac{h}{a} = \dfrac{k}{b} = \dfrac{9}{{{a^2} + {b^2}}}\]
The value of h in terms of a and b is given by:
\[h = \dfrac{{9a}}{{{a^2} + {b^2}}}..........(4)\]
The value of k in terms of a and b is given by,
\[k = \dfrac{{9b}}{{{a^2} + {b^2}}}..........(5)\]
Substituting equations (4) and (5) in equation (1), we have:
\[4\left( {\dfrac{{9a}}{{{a^2} + {b^2}}}} \right) - 5\left( {\dfrac{{9b}}{{{a^2} + {b^2}}}} \right) = 20\]
Simplifying, we get:
\[36a - 45b = 20({a^2} + {b^2})\]
\[20({a^2} + {b^2}) - 36a + 45b = 0\]
Replacing a and b with x and y respectively, we get:
\[20({x^2} + {y^2}) - 36x + 45y = 0\]
Hence, the correct answer is option (a).
Note: The equation of the chord with a midpoint (a, b) is \[ax + by = {a^2} + {b^2}\]. The equation of the chord of contact of tangents drawn from the point (h, k) outside the circle \[{x^2} + {y^2} = {a^2}\] is \[hx + ky = {a^2}\].
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
State the principle of an ac generator and explain class 12 physics CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

Derive an expression for electric potential at point class 12 physics CBSE

What is virtual and erect image ?

Explain the formation of energy bands in solids On class 12 physics CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

