
Lines \[{{L}_{1}}:\dfrac{x-6}{3}=\dfrac{y-4}{2}=z-2\] and \[{{L}_{2}}:\dfrac{x-8}{4}=y-2=\dfrac{z-4}{2}\] meets plane \[\pi :\overrightarrow{r}\cdot (2\widehat{i}+\widehat{j}-\widehat{k})=7\]at points \[A,B\] then find area of triangle formed by the lines \[{{L}_{1}},{{L}_{2}}\] and \[AB\] is :
A). \[\dfrac{7}{2}\sqrt{\dfrac{19}{2}}\]
B). \[\sqrt{\dfrac{19}{2}}\]
C). \[\dfrac{\sqrt{11}}{4}\]
D). \[6\sqrt{5}\]
Answer
502.5k+ views
Hint: First of all assume the point of intersection of both the lines be \[\lambda \] and \[\mu \]after that find out the value of \[\lambda \] and \[\mu \] by equating the equations, then find out the value of plane of line by applying vector dot product and we can find out the point of intersection of \[A\] and \[B\] then find out the area of triangle and check which option is correct in the above given options.
Complete step-by-step solution:
We have given two lines:
\[\Rightarrow {{L}_{1}}:\dfrac{x-6}{3}=\dfrac{y-4}{2}=z-2\] mark it as equation \[(1)\]
\[\Rightarrow {{L}_{2}}:\dfrac{x-8}{4}=y-2=\dfrac{z-4}{2}\] mark it as equation \[(2)\]
Let the point of intersection for equation \[(1)\]be \[\lambda \]
Now according to equation \[(1)\] we will find out the values of \[x,y,z\]
\[\Rightarrow \dfrac{x-6}{3}=\lambda \]
\[\Rightarrow x-6=3\lambda \]
\[\Rightarrow x=3\lambda +6\] mark it as equation \[(3)\]
Similarly find out the value of \[y\]
\[\Rightarrow \dfrac{y-4}{2}=\lambda \]
\[\Rightarrow y-4=2\lambda \]
\[\Rightarrow y=2\lambda +4\] mark it as equation \[(4)\]
Now find the value of \[z\]
\[\Rightarrow z-2=\lambda \]
\[\Rightarrow z=\lambda +2\] mark it as equation \[(5)\]
Let the point of intersection for equation \[(2)\]be \[\mu \]
Now according to equation \[(2)\] we will find out the values of \[x,y,z\]
\[\Rightarrow \dfrac{x-8}{4}=\mu \]
\[\Rightarrow x-8=4\mu \]
\[\Rightarrow x=4\mu +8\] mark it as equation \[(6)\]
Similarly find out the value of \[y\]
\[\Rightarrow y-2=\mu \]
\[\Rightarrow y=\mu +2\] mark it as equation \[(7)\]
Now find the value of \[z\]
\[\Rightarrow \dfrac{z-4}{2}=\mu \]
\[\Rightarrow z-4=2\mu \]
\[\Rightarrow z=2\mu +4\] mark it as equation \[(8)\]
Equating the equation \[(3)\] and \[(6)\] we get:
\[\Rightarrow 3\lambda +6=4\mu +8\]
\[\Rightarrow 3\lambda -4\mu =8-6\]
\[\Rightarrow 3\lambda -4\mu =2\] mark it as equation \[(9)\]
Equating the equation \[(4)\] and \[(7)\] we get:
\[\Rightarrow 2\lambda +4=\mu +2\]
\[\Rightarrow 2\lambda -\mu =2-4\]
\[\Rightarrow 2\lambda -\mu =-2\] mark it as equation \[(10)\]
Now to find the value of \[\lambda \] we will multiply equation \[(10)\] by \[4\] on both sides, then subtract it from equation \[(9)\] we will get:
\[\Rightarrow \left( 2\lambda -\mu \right)\times 4=-2\times 4\]
\[\Rightarrow 8\lambda -4\mu =-8\]
Now subtract equation \[(9)\] from it:
\[\Rightarrow 8\lambda -4\mu -\left( 3\lambda -4\mu \right)=-8-2\]
\[\Rightarrow 8\lambda -4\mu -3\lambda +4\mu =-10\]
\[\Rightarrow 5\lambda =-10\]
\[\Rightarrow \lambda =-\dfrac{10}{5}\]
\[\Rightarrow \lambda =-2\]
Hence the point of intersection will be \[C(0,0,0)\]
We have given \[\pi :\overrightarrow{r}\cdot (2\widehat{i}+\widehat{j}-\widehat{k})=7\]
As we know that \[\overrightarrow{r}=x\widehat{i}+y\widehat{j}+z\widehat{k}\] , put the value of \[\overrightarrow{r}\] we get:
\[\Rightarrow x\widehat{i}+y\widehat{j}+z\widehat{k}\cdot (2\widehat{i}+\widehat{j}-\widehat{k})=7\]
Apply dot product:
\[\Rightarrow 2x+y-z=7\]
We will find the intersection point for \[{{L}_{1}}\] by putting the values of \[x,y,z\] from equation \[(3),(4),(5)\]
\[\Rightarrow 2x+y-z=7\]
\[\Rightarrow 2\left( 3\lambda +6 \right)+2\lambda +4-\left( \lambda +2 \right)=7\]
\[\Rightarrow 6\lambda +12+2\lambda +4-\lambda -2=7\]
\[\Rightarrow 7\lambda =-7\]
\[\Rightarrow \lambda =-1\]
Point \[A\] will be: \[\left( 3\lambda +6,2\lambda +4,\lambda +2 \right)\]
Put the value of \[\lambda \] we get:
\[\Rightarrow A(3,2,1)\]
We will find the intersection point for \[{{L}_{2}}\] by putting the values of \[x,y,z\] from equation \[(6),(7),(8)\]
\[\Rightarrow 2x+y-z=7\]
\[\Rightarrow 2\left( 4\mu +8 \right)+\mu +2-\left( 2\mu +4 \right)=7\]
\[\Rightarrow 8\mu +16+\mu +2-2\mu -4=7\]
\[\Rightarrow 7\mu =-7\]
\[\Rightarrow \mu =-1\]
Point \[B\] will be: \[\left( 4\mu +8,\mu +2,2\mu +4 \right)\]
Put the value of \[\mu \] we get:
\[\Rightarrow B(4,1,2)\]
Hence to find the area of triangle will be:
If we write it in vector form then:
\[\Rightarrow \overrightarrow{AC}=3\widehat{i}+2\widehat{j}+\widehat{k}\]
\[\Rightarrow \overrightarrow{BC}=4\widehat{i}+\widehat{j}+2\widehat{k}\]
\[\Rightarrow \text{Area of triangle=}\dfrac{1}{2}\left| \overrightarrow{AC}\times \overrightarrow{BC} \right|\]
Now we will find the value of \[\overrightarrow{AC}\times \overrightarrow{BC}\]
\[\Rightarrow \overrightarrow{AC}\times \overrightarrow{BC}=\left| \begin{align}
& \widehat{i}\text{ }\widehat{j}\text{ }\widehat{k} \\
& 3\text{ }2\text{ }1 \\
& 4\text{ }1\text{ }2 \\
\end{align} \right|\]
\[=3\widehat{i}-\widehat{j}(2)+\widehat{k}(-5)\]
\[= 3\widehat{i}-2\widehat{j}-5\widehat{k}\]
\[\Rightarrow \left| \overrightarrow{AC}\times \overrightarrow{BC} \right|=\sqrt{9+4+25}\]
\[\Rightarrow \left| \overrightarrow{AC}\times \overrightarrow{BC} \right|=\sqrt{38}\]
Therefore Area of triangle \[ABC\] will be
\[\Rightarrow \dfrac{1}{2}\times \sqrt{38}\]
\[= \dfrac{\sqrt{38}}{2}\]
\[= \dfrac{\sqrt{2}\times \sqrt{19}}{2}\]
\[= \dfrac{\sqrt{2}\times \sqrt{19}}{2}\times \dfrac{\sqrt{2}}{\sqrt{2}}\]
\[= \dfrac{2\times \sqrt{19}}{2\sqrt{2}}\]
\[=\sqrt{\dfrac{19}{2}}\]
Hence option \[(B)\] is correct as the area of the triangle is \[\sqrt{\dfrac{19}{2}}\].
Note: Students you know that the total of a triangle's interior angles is always 180o, regardless of how the triangle is created and no matter how a triangle is made, it can always be broken into two right triangles. Any of a triangle's sides is shorter than the total of the other two sides.
Complete step-by-step solution:
We have given two lines:
\[\Rightarrow {{L}_{1}}:\dfrac{x-6}{3}=\dfrac{y-4}{2}=z-2\] mark it as equation \[(1)\]
\[\Rightarrow {{L}_{2}}:\dfrac{x-8}{4}=y-2=\dfrac{z-4}{2}\] mark it as equation \[(2)\]
Let the point of intersection for equation \[(1)\]be \[\lambda \]
Now according to equation \[(1)\] we will find out the values of \[x,y,z\]
\[\Rightarrow \dfrac{x-6}{3}=\lambda \]
\[\Rightarrow x-6=3\lambda \]
\[\Rightarrow x=3\lambda +6\] mark it as equation \[(3)\]
Similarly find out the value of \[y\]
\[\Rightarrow \dfrac{y-4}{2}=\lambda \]
\[\Rightarrow y-4=2\lambda \]
\[\Rightarrow y=2\lambda +4\] mark it as equation \[(4)\]
Now find the value of \[z\]
\[\Rightarrow z-2=\lambda \]
\[\Rightarrow z=\lambda +2\] mark it as equation \[(5)\]
Let the point of intersection for equation \[(2)\]be \[\mu \]
Now according to equation \[(2)\] we will find out the values of \[x,y,z\]
\[\Rightarrow \dfrac{x-8}{4}=\mu \]
\[\Rightarrow x-8=4\mu \]
\[\Rightarrow x=4\mu +8\] mark it as equation \[(6)\]
Similarly find out the value of \[y\]
\[\Rightarrow y-2=\mu \]
\[\Rightarrow y=\mu +2\] mark it as equation \[(7)\]
Now find the value of \[z\]
\[\Rightarrow \dfrac{z-4}{2}=\mu \]
\[\Rightarrow z-4=2\mu \]
\[\Rightarrow z=2\mu +4\] mark it as equation \[(8)\]
Equating the equation \[(3)\] and \[(6)\] we get:
\[\Rightarrow 3\lambda +6=4\mu +8\]
\[\Rightarrow 3\lambda -4\mu =8-6\]
\[\Rightarrow 3\lambda -4\mu =2\] mark it as equation \[(9)\]
Equating the equation \[(4)\] and \[(7)\] we get:
\[\Rightarrow 2\lambda +4=\mu +2\]
\[\Rightarrow 2\lambda -\mu =2-4\]
\[\Rightarrow 2\lambda -\mu =-2\] mark it as equation \[(10)\]
Now to find the value of \[\lambda \] we will multiply equation \[(10)\] by \[4\] on both sides, then subtract it from equation \[(9)\] we will get:
\[\Rightarrow \left( 2\lambda -\mu \right)\times 4=-2\times 4\]
\[\Rightarrow 8\lambda -4\mu =-8\]
Now subtract equation \[(9)\] from it:
\[\Rightarrow 8\lambda -4\mu -\left( 3\lambda -4\mu \right)=-8-2\]
\[\Rightarrow 8\lambda -4\mu -3\lambda +4\mu =-10\]
\[\Rightarrow 5\lambda =-10\]
\[\Rightarrow \lambda =-\dfrac{10}{5}\]
\[\Rightarrow \lambda =-2\]
Hence the point of intersection will be \[C(0,0,0)\]
We have given \[\pi :\overrightarrow{r}\cdot (2\widehat{i}+\widehat{j}-\widehat{k})=7\]
As we know that \[\overrightarrow{r}=x\widehat{i}+y\widehat{j}+z\widehat{k}\] , put the value of \[\overrightarrow{r}\] we get:
\[\Rightarrow x\widehat{i}+y\widehat{j}+z\widehat{k}\cdot (2\widehat{i}+\widehat{j}-\widehat{k})=7\]
Apply dot product:
\[\Rightarrow 2x+y-z=7\]
We will find the intersection point for \[{{L}_{1}}\] by putting the values of \[x,y,z\] from equation \[(3),(4),(5)\]
\[\Rightarrow 2x+y-z=7\]
\[\Rightarrow 2\left( 3\lambda +6 \right)+2\lambda +4-\left( \lambda +2 \right)=7\]
\[\Rightarrow 6\lambda +12+2\lambda +4-\lambda -2=7\]
\[\Rightarrow 7\lambda =-7\]
\[\Rightarrow \lambda =-1\]
Point \[A\] will be: \[\left( 3\lambda +6,2\lambda +4,\lambda +2 \right)\]
Put the value of \[\lambda \] we get:
\[\Rightarrow A(3,2,1)\]
We will find the intersection point for \[{{L}_{2}}\] by putting the values of \[x,y,z\] from equation \[(6),(7),(8)\]
\[\Rightarrow 2x+y-z=7\]
\[\Rightarrow 2\left( 4\mu +8 \right)+\mu +2-\left( 2\mu +4 \right)=7\]
\[\Rightarrow 8\mu +16+\mu +2-2\mu -4=7\]
\[\Rightarrow 7\mu =-7\]
\[\Rightarrow \mu =-1\]
Point \[B\] will be: \[\left( 4\mu +8,\mu +2,2\mu +4 \right)\]
Put the value of \[\mu \] we get:
\[\Rightarrow B(4,1,2)\]
Hence to find the area of triangle will be:
If we write it in vector form then:
\[\Rightarrow \overrightarrow{AC}=3\widehat{i}+2\widehat{j}+\widehat{k}\]
\[\Rightarrow \overrightarrow{BC}=4\widehat{i}+\widehat{j}+2\widehat{k}\]
\[\Rightarrow \text{Area of triangle=}\dfrac{1}{2}\left| \overrightarrow{AC}\times \overrightarrow{BC} \right|\]
Now we will find the value of \[\overrightarrow{AC}\times \overrightarrow{BC}\]
\[\Rightarrow \overrightarrow{AC}\times \overrightarrow{BC}=\left| \begin{align}
& \widehat{i}\text{ }\widehat{j}\text{ }\widehat{k} \\
& 3\text{ }2\text{ }1 \\
& 4\text{ }1\text{ }2 \\
\end{align} \right|\]
\[=3\widehat{i}-\widehat{j}(2)+\widehat{k}(-5)\]
\[= 3\widehat{i}-2\widehat{j}-5\widehat{k}\]
\[\Rightarrow \left| \overrightarrow{AC}\times \overrightarrow{BC} \right|=\sqrt{9+4+25}\]
\[\Rightarrow \left| \overrightarrow{AC}\times \overrightarrow{BC} \right|=\sqrt{38}\]
Therefore Area of triangle \[ABC\] will be
\[\Rightarrow \dfrac{1}{2}\times \sqrt{38}\]
\[= \dfrac{\sqrt{38}}{2}\]
\[= \dfrac{\sqrt{2}\times \sqrt{19}}{2}\]
\[= \dfrac{\sqrt{2}\times \sqrt{19}}{2}\times \dfrac{\sqrt{2}}{\sqrt{2}}\]
\[= \dfrac{2\times \sqrt{19}}{2\sqrt{2}}\]
\[=\sqrt{\dfrac{19}{2}}\]
Hence option \[(B)\] is correct as the area of the triangle is \[\sqrt{\dfrac{19}{2}}\].
Note: Students you know that the total of a triangle's interior angles is always 180o, regardless of how the triangle is created and no matter how a triangle is made, it can always be broken into two right triangles. Any of a triangle's sides is shorter than the total of the other two sides.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

