
Line \[\mathop r\limits^ \to {\text{ }} = \left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right)\] contained in a plane to which vector \[\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k\] is normal . Find the value of \[\lambda \] . Also find the vector equation of the plane .
Answer
490.2k+ views
Hint: We have to find the value of \[\lambda \] and the vector equation of the plane . We solve this question using the concept of three dimensional geometry and vector algebra and we also use the concept of two vectors perpendicular to each other . We use the formula of two vectors perpendicular to each other to find the value of \[\lambda \] and then find the vector equation of the plane using the formula for the vector equations .
Complete step-by-step answer:
Given :
\[\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right)\]
\[\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}2t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}i{\text{ }} - {\text{ }}\left( {{\text{ }}t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}j{\text{ }} + {\text{ }}\left( {{\text{ }}t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}k\]
\[\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k\]
As given , the line \[\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right)\] is normal to \[\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k{\text{ }}.\]
This means that \[\mathop r\limits^ \to {\text{ }}\] and \[\mathop n\limits^ \to {\text{ }}\] are perpendicular to each other .
We also know that the dot product to two vectors is zero if both the vectors are perpendicular .
So , we get
\[\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }}.{\text{ }}\left( {{\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k{\text{ }}} \right){\text{ }} = {\text{ }}0\]
As , we know that
\[i{\text{ }}.{\text{ }}i{\text{ }} = {\text{ }}j{\text{ }}.{\text{ }}j{\text{ }} = {\text{ }}k{\text{ }}.{\text{ }}k{\text{ }} = {\text{ }}1\] Also ,
i . j = i . k = j . k = 0
By multiplication of terms , we get
\[6{\text{ }} + {\text{ }}2{\text{ }} + {\text{ }}\lambda {\text{ }} = {\text{ }}0\]
We get ,
\[\lambda {\text{ }} = {\text{ }} - 8\]
The points that lies on the plane are \[\left( {{\text{ }}1{\text{ }},{\text{ }} - 1{\text{ }},{\text{ }}1{\text{ }}} \right)\]
Using this points , we get values of points as :
\[\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }},{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }},{\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right)\]
Vector equation of plane is given as :
Putting these points in \[\overrightarrow n \] , we get
\[3{\text{ }}\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}2{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }} + {\text{ }}\lambda {\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} = {\text{ }}0\]
putting the value of $\lambda $ , we get
\[3{\text{ }}\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}2{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}8{\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} = {\text{ }}0\]
Expanding the terms , we get
\[3{\text{ }}x{\text{ }} - {\text{ }}2{\text{ }}y{\text{ }} - {\text{ }}8{\text{ }}z{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}0\]
Thus , the value of \[\lambda \] is \[ - 8\] and the vector equation of the plane is \[3{\text{ }}x{\text{ }} - {\text{ }}2{\text{ }}y{\text{ }} - {\text{ }}8{\text{ }}z{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}0{\text{ }}.\]
Note: The scalar product of two given vectors \[\mathop a\limits^ \to {\text{ }}\] and \[\mathop b\limits^ \to {\text{ }}\] having angle $\theta $ between them is defined as :
\[\mathop a\limits^ \to {\text{ }}.{\text{ }}\mathop b\limits^ \to {\text{ }} = {\text{ }}\left| a \right|{\text{ }}\left| b \right|{\text{ }}cos{\text{ }}\theta \] Also , when \[\mathop a\limits^ \to {\text{ }}.{\text{ }}\mathop b\limits^ \to {\text{ }}\] is given , the angle ‘$\theta $’ between the vectors \[\mathop a\limits^ \to {\text{ }}\] and \[\mathop b\limits^ \to {\text{ }}\].
Complete step-by-step answer:
Given :
\[\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right)\]
\[\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}2t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}i{\text{ }} - {\text{ }}\left( {{\text{ }}t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}j{\text{ }} + {\text{ }}\left( {{\text{ }}t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}k\]
\[\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k\]
As given , the line \[\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right)\] is normal to \[\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k{\text{ }}.\]
This means that \[\mathop r\limits^ \to {\text{ }}\] and \[\mathop n\limits^ \to {\text{ }}\] are perpendicular to each other .
We also know that the dot product to two vectors is zero if both the vectors are perpendicular .
So , we get
\[\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }}.{\text{ }}\left( {{\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k{\text{ }}} \right){\text{ }} = {\text{ }}0\]
As , we know that
\[i{\text{ }}.{\text{ }}i{\text{ }} = {\text{ }}j{\text{ }}.{\text{ }}j{\text{ }} = {\text{ }}k{\text{ }}.{\text{ }}k{\text{ }} = {\text{ }}1\] Also ,
i . j = i . k = j . k = 0
By multiplication of terms , we get
\[6{\text{ }} + {\text{ }}2{\text{ }} + {\text{ }}\lambda {\text{ }} = {\text{ }}0\]
We get ,
\[\lambda {\text{ }} = {\text{ }} - 8\]
The points that lies on the plane are \[\left( {{\text{ }}1{\text{ }},{\text{ }} - 1{\text{ }},{\text{ }}1{\text{ }}} \right)\]
Using this points , we get values of points as :
\[\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }},{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }},{\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right)\]
Vector equation of plane is given as :
Putting these points in \[\overrightarrow n \] , we get
\[3{\text{ }}\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}2{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }} + {\text{ }}\lambda {\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} = {\text{ }}0\]
putting the value of $\lambda $ , we get
\[3{\text{ }}\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}2{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}8{\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} = {\text{ }}0\]
Expanding the terms , we get
\[3{\text{ }}x{\text{ }} - {\text{ }}2{\text{ }}y{\text{ }} - {\text{ }}8{\text{ }}z{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}0\]
Thus , the value of \[\lambda \] is \[ - 8\] and the vector equation of the plane is \[3{\text{ }}x{\text{ }} - {\text{ }}2{\text{ }}y{\text{ }} - {\text{ }}8{\text{ }}z{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}0{\text{ }}.\]
Note: The scalar product of two given vectors \[\mathop a\limits^ \to {\text{ }}\] and \[\mathop b\limits^ \to {\text{ }}\] having angle $\theta $ between them is defined as :
\[\mathop a\limits^ \to {\text{ }}.{\text{ }}\mathop b\limits^ \to {\text{ }} = {\text{ }}\left| a \right|{\text{ }}\left| b \right|{\text{ }}cos{\text{ }}\theta \] Also , when \[\mathop a\limits^ \to {\text{ }}.{\text{ }}\mathop b\limits^ \to {\text{ }}\] is given , the angle ‘$\theta $’ between the vectors \[\mathop a\limits^ \to {\text{ }}\] and \[\mathop b\limits^ \to {\text{ }}\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

