
Line \[\mathop r\limits^ \to {\text{ }} = \left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right)\] contained in a plane to which vector \[\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k\] is normal . Find the value of \[\lambda \] . Also find the vector equation of the plane .
Answer
504.3k+ views
Hint: We have to find the value of \[\lambda \] and the vector equation of the plane . We solve this question using the concept of three dimensional geometry and vector algebra and we also use the concept of two vectors perpendicular to each other . We use the formula of two vectors perpendicular to each other to find the value of \[\lambda \] and then find the vector equation of the plane using the formula for the vector equations .
Complete step-by-step answer:
Given :
\[\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right)\]
\[\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}2t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}i{\text{ }} - {\text{ }}\left( {{\text{ }}t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}j{\text{ }} + {\text{ }}\left( {{\text{ }}t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}k\]
\[\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k\]
As given , the line \[\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right)\] is normal to \[\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k{\text{ }}.\]
This means that \[\mathop r\limits^ \to {\text{ }}\] and \[\mathop n\limits^ \to {\text{ }}\] are perpendicular to each other .
We also know that the dot product to two vectors is zero if both the vectors are perpendicular .
So , we get
\[\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }}.{\text{ }}\left( {{\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k{\text{ }}} \right){\text{ }} = {\text{ }}0\]
As , we know that
\[i{\text{ }}.{\text{ }}i{\text{ }} = {\text{ }}j{\text{ }}.{\text{ }}j{\text{ }} = {\text{ }}k{\text{ }}.{\text{ }}k{\text{ }} = {\text{ }}1\] Also ,
i . j = i . k = j . k = 0
By multiplication of terms , we get
\[6{\text{ }} + {\text{ }}2{\text{ }} + {\text{ }}\lambda {\text{ }} = {\text{ }}0\]
We get ,
\[\lambda {\text{ }} = {\text{ }} - 8\]
The points that lies on the plane are \[\left( {{\text{ }}1{\text{ }},{\text{ }} - 1{\text{ }},{\text{ }}1{\text{ }}} \right)\]
Using this points , we get values of points as :
\[\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }},{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }},{\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right)\]
Vector equation of plane is given as :
Putting these points in \[\overrightarrow n \] , we get
\[3{\text{ }}\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}2{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }} + {\text{ }}\lambda {\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} = {\text{ }}0\]
putting the value of $\lambda $ , we get
\[3{\text{ }}\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}2{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}8{\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} = {\text{ }}0\]
Expanding the terms , we get
\[3{\text{ }}x{\text{ }} - {\text{ }}2{\text{ }}y{\text{ }} - {\text{ }}8{\text{ }}z{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}0\]
Thus , the value of \[\lambda \] is \[ - 8\] and the vector equation of the plane is \[3{\text{ }}x{\text{ }} - {\text{ }}2{\text{ }}y{\text{ }} - {\text{ }}8{\text{ }}z{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}0{\text{ }}.\]
Note: The scalar product of two given vectors \[\mathop a\limits^ \to {\text{ }}\] and \[\mathop b\limits^ \to {\text{ }}\] having angle $\theta $ between them is defined as :
\[\mathop a\limits^ \to {\text{ }}.{\text{ }}\mathop b\limits^ \to {\text{ }} = {\text{ }}\left| a \right|{\text{ }}\left| b \right|{\text{ }}cos{\text{ }}\theta \] Also , when \[\mathop a\limits^ \to {\text{ }}.{\text{ }}\mathop b\limits^ \to {\text{ }}\] is given , the angle ‘$\theta $’ between the vectors \[\mathop a\limits^ \to {\text{ }}\] and \[\mathop b\limits^ \to {\text{ }}\].
Complete step-by-step answer:
Given :
\[\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right)\]
\[\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}2t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}i{\text{ }} - {\text{ }}\left( {{\text{ }}t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}j{\text{ }} + {\text{ }}\left( {{\text{ }}t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}k\]
\[\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k\]
As given , the line \[\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right)\] is normal to \[\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k{\text{ }}.\]
This means that \[\mathop r\limits^ \to {\text{ }}\] and \[\mathop n\limits^ \to {\text{ }}\] are perpendicular to each other .
We also know that the dot product to two vectors is zero if both the vectors are perpendicular .
So , we get
\[\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }}.{\text{ }}\left( {{\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k{\text{ }}} \right){\text{ }} = {\text{ }}0\]
As , we know that
\[i{\text{ }}.{\text{ }}i{\text{ }} = {\text{ }}j{\text{ }}.{\text{ }}j{\text{ }} = {\text{ }}k{\text{ }}.{\text{ }}k{\text{ }} = {\text{ }}1\] Also ,
i . j = i . k = j . k = 0
By multiplication of terms , we get
\[6{\text{ }} + {\text{ }}2{\text{ }} + {\text{ }}\lambda {\text{ }} = {\text{ }}0\]
We get ,
\[\lambda {\text{ }} = {\text{ }} - 8\]
The points that lies on the plane are \[\left( {{\text{ }}1{\text{ }},{\text{ }} - 1{\text{ }},{\text{ }}1{\text{ }}} \right)\]
Using this points , we get values of points as :
\[\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }},{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }},{\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right)\]
Vector equation of plane is given as :
Putting these points in \[\overrightarrow n \] , we get
\[3{\text{ }}\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}2{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }} + {\text{ }}\lambda {\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} = {\text{ }}0\]
putting the value of $\lambda $ , we get
\[3{\text{ }}\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}2{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}8{\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} = {\text{ }}0\]
Expanding the terms , we get
\[3{\text{ }}x{\text{ }} - {\text{ }}2{\text{ }}y{\text{ }} - {\text{ }}8{\text{ }}z{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}0\]
Thus , the value of \[\lambda \] is \[ - 8\] and the vector equation of the plane is \[3{\text{ }}x{\text{ }} - {\text{ }}2{\text{ }}y{\text{ }} - {\text{ }}8{\text{ }}z{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}0{\text{ }}.\]
Note: The scalar product of two given vectors \[\mathop a\limits^ \to {\text{ }}\] and \[\mathop b\limits^ \to {\text{ }}\] having angle $\theta $ between them is defined as :
\[\mathop a\limits^ \to {\text{ }}.{\text{ }}\mathop b\limits^ \to {\text{ }} = {\text{ }}\left| a \right|{\text{ }}\left| b \right|{\text{ }}cos{\text{ }}\theta \] Also , when \[\mathop a\limits^ \to {\text{ }}.{\text{ }}\mathop b\limits^ \to {\text{ }}\] is given , the angle ‘$\theta $’ between the vectors \[\mathop a\limits^ \to {\text{ }}\] and \[\mathop b\limits^ \to {\text{ }}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

