
Let’s assume the values of $u,v$ are $${\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} - 1}}{x}} \right)$$, $${\tan ^{ - 1}}\left( x \right)$$ . Now choose the value of $\dfrac{{du}}{{dv}}$ from the options given below.
1. $2$
2. $1$
3. $\dfrac{1}{2}$
4. $$ - 1$$
Answer
506.7k+ views
Hint: There are various ways of solving this problem. Now we want the value of $\dfrac{{du}}{{dv}}$ so let’s try to express the value of u in terms of v to calculate the value of $\dfrac{{du}}{{dv}}$ and then we can easily calculate the value of $\dfrac{{du}}{{dv}}$ by using the trigonometric relations we know.
Complete step-by-step solution:
Given,
$u = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} - 1}}{x}} \right)$,
$v = {\tan ^{ - 1}}\left( x \right)$
On applying $\tan $a function on both sides we get
$\tan v = x$.
Now, let’s substitute the value $x$ in $u$. We get,
$u = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}}} \right)$
We know that
$\tan \left( {\dfrac{v}{2}} \right) = \dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}}$
Now let’s replace the value of $\dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}}$ in $u$ into $\tan \left( {\dfrac{v}{2}} \right)$.
Therefore,$u = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{v}{2}} \right)} \right)$
We know that the value of ${\tan ^{ - 1}}\left( {\tan \left( x \right)} \right)$ is nothing but $x$. Since $\tan $ and ${\tan ^{ - 1}}$ are inverse functions.
So, $u = \dfrac{v}{2}$
Now, let’s calculate the value of $\dfrac{{du}}{{dv}}$,
By substituting the value of $u$ in terms of $v$ we get $\dfrac{{du}}{{dv}} = \dfrac{d}{{dv}}\left( {\dfrac{v}{2}} \right)$,
$ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{2}\dfrac{d}{{dv}}\left( v \right)$
$ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{2}\dfrac{{dv}}{{dv}}$
$ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{2}$
So, the required value $\dfrac{{du}}{{dv}}$ is $\dfrac{1}{2}$.
The correct option is 3.
Additional information:
In the above solution, we have used the formula of $\tan \left( {\dfrac{v}{2}} \right)$.
Now let’s prove it.
The formula is
$\tan \left( {\dfrac{v}{2}} \right) = \dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}}$,
$RHS = \dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}}$,
We know by the basic trigonometric equations ${\sec ^2}\theta - {\tan ^2}\theta = 1$$ \Leftrightarrow $${\sec ^2}\theta = 1 + {\tan ^2}\theta $
Therefore,
$ \Rightarrow RHS = \dfrac{{\sqrt {{{\sec }^2}v} - 1}}{{\tan v}}$,
$ \Rightarrow RHS = \dfrac{{\sec v - 1}}{{\tan v}}$,
On multiplying both numerator and denominator by $\cos v$, we get
$ \Rightarrow RHS = \dfrac{{1 - \cos v}}{{\sin v}}$,
We know that,
$1 - \cos v = 2{\sin ^2}\left( {\dfrac{v}{2}} \right),\sin v = 2\sin \left( {\dfrac{v}{2}} \right)\cos \left( {\dfrac{v}{2}} \right)$,
On substituting both values to RHS, we get
$$ \Rightarrow RHS = \dfrac{{2{{\sin }^2}\left( {\dfrac{v}{2}} \right)}}{{2\sin \left( {\dfrac{v}{2}} \right)\cos \left( {\dfrac{v}{2}} \right)}}$$,
On further simplifying the above equation we get,
$ \Rightarrow RHS = \dfrac{{\sin \left( {\dfrac{v}{2}} \right)}}{{\cos \left( {\dfrac{v}{2}} \right)}}$,
$ \Rightarrow $$RHS = \tan \left( {\dfrac{v}{2}} \right)$
Therefore, $RHS = LHS$.
Note: There are many ways of solving this problem. The other way of solving this problem is to find the values of $du,dv$ with respect to $x$ and dividing the resulting $du,dv$ values to obtain the answer. So finally, the required answer for the given question is $\dfrac{1}{2}$.
Complete step-by-step solution:
Given,
$u = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} - 1}}{x}} \right)$,
$v = {\tan ^{ - 1}}\left( x \right)$
On applying $\tan $a function on both sides we get
$\tan v = x$.
Now, let’s substitute the value $x$ in $u$. We get,
$u = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}}} \right)$
We know that
$\tan \left( {\dfrac{v}{2}} \right) = \dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}}$
Now let’s replace the value of $\dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}}$ in $u$ into $\tan \left( {\dfrac{v}{2}} \right)$.
Therefore,$u = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{v}{2}} \right)} \right)$
We know that the value of ${\tan ^{ - 1}}\left( {\tan \left( x \right)} \right)$ is nothing but $x$. Since $\tan $ and ${\tan ^{ - 1}}$ are inverse functions.
So, $u = \dfrac{v}{2}$
Now, let’s calculate the value of $\dfrac{{du}}{{dv}}$,
By substituting the value of $u$ in terms of $v$ we get $\dfrac{{du}}{{dv}} = \dfrac{d}{{dv}}\left( {\dfrac{v}{2}} \right)$,
$ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{2}\dfrac{d}{{dv}}\left( v \right)$
$ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{2}\dfrac{{dv}}{{dv}}$
$ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{2}$
So, the required value $\dfrac{{du}}{{dv}}$ is $\dfrac{1}{2}$.
The correct option is 3.
Additional information:
In the above solution, we have used the formula of $\tan \left( {\dfrac{v}{2}} \right)$.
Now let’s prove it.
The formula is
$\tan \left( {\dfrac{v}{2}} \right) = \dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}}$,
$RHS = \dfrac{{\sqrt {1 + {{\tan }^2}v} - 1}}{{\tan v}}$,
We know by the basic trigonometric equations ${\sec ^2}\theta - {\tan ^2}\theta = 1$$ \Leftrightarrow $${\sec ^2}\theta = 1 + {\tan ^2}\theta $
Therefore,
$ \Rightarrow RHS = \dfrac{{\sqrt {{{\sec }^2}v} - 1}}{{\tan v}}$,
$ \Rightarrow RHS = \dfrac{{\sec v - 1}}{{\tan v}}$,
On multiplying both numerator and denominator by $\cos v$, we get
$ \Rightarrow RHS = \dfrac{{1 - \cos v}}{{\sin v}}$,
We know that,
$1 - \cos v = 2{\sin ^2}\left( {\dfrac{v}{2}} \right),\sin v = 2\sin \left( {\dfrac{v}{2}} \right)\cos \left( {\dfrac{v}{2}} \right)$,
On substituting both values to RHS, we get
$$ \Rightarrow RHS = \dfrac{{2{{\sin }^2}\left( {\dfrac{v}{2}} \right)}}{{2\sin \left( {\dfrac{v}{2}} \right)\cos \left( {\dfrac{v}{2}} \right)}}$$,
On further simplifying the above equation we get,
$ \Rightarrow RHS = \dfrac{{\sin \left( {\dfrac{v}{2}} \right)}}{{\cos \left( {\dfrac{v}{2}} \right)}}$,
$ \Rightarrow $$RHS = \tan \left( {\dfrac{v}{2}} \right)$
Therefore, $RHS = LHS$.
Note: There are many ways of solving this problem. The other way of solving this problem is to find the values of $du,dv$ with respect to $x$ and dividing the resulting $du,dv$ values to obtain the answer. So finally, the required answer for the given question is $\dfrac{1}{2}$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

