
Let , $z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{5}}$ . If $R\left( z \right)$ and $I\left( z \right)$ respectively denote the real and imaginary parts of $z$ , then
(a) $R\left( z \right)>0$ and $I\left( z \right)>0$
(b) $R\left( z \right)<0$ and $I\left( z \right)>0$
(c) $R\left( z \right)=3$
(d) $I\left( z \right)=0$
Answer
511.5k+ views
Hint: Consider , the equation $z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{5}}$ and expand the powers . After separating the powers , you will get a complex number . Convert the complex number to the general form of writing a complex number i.e. $z=a+ib$ , $a=R\left( z \right),b=I\left( z \right)$ ; . At this stage you have the values of $R\left( z \right)$ and $I\left( z \right)$ , observe these values and hence choose the option wisely.
Complete step-by-step answer:
We are given a complex number of the form
$z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{5}}$
And we have to observe its real and imaginary parts so first we have to simplify it .
Consider this complex number and expand the terms involving powers to simplify the complex number , and get
$\begin{align}
& z=\dfrac{1}{{{2}^{5}}}{{\left( \sqrt{3}+i \right)}^{5}}+\dfrac{1}{{{2}^{5}}}{{\left( \sqrt{3}-i \right)}^{5}} \\
& =\dfrac{1}{{{2}^{5}}}\left( {{\left( \sqrt{3}+i \right)}^{2}}{{\left( \sqrt{3}+i \right)}^{2}}\left( \sqrt{3}+i \right) \right)+\dfrac{1}{{{2}^{5}}}\left( {{\left( \sqrt{3}-i \right)}^{2}}{{\left( \sqrt{3}-i \right)}^{2}}\left( \sqrt{3}-i \right) \right) \\
& =\dfrac{1}{{{2}^{5}}}\left( {{\left( 2+2\sqrt{3}i \right)}^{2}}\left( \sqrt{3}+i \right) \right)+\dfrac{1}{{{2}^{5}}}\left( {{\left( 2-2\sqrt{3}i \right)}^{2}}\left( \sqrt{3}-i \right) \right) \\
& =\dfrac{1}{{{2}^{3}}}\left( {{\left( 1+\sqrt{3}i \right)}^{2}}\left( \sqrt{3}+i \right) \right)+\dfrac{1}{{{2}^{3}}}\left( {{\left( 1-\sqrt{3}i \right)}^{2}}\left( \sqrt{3}-i \right) \right) \\
& =\dfrac{1}{{{2}^{2}}}\left( \left( -1+\sqrt{3}i \right)\left( \sqrt{3}+i \right) \right)+\dfrac{1}{{{2}^{2}}}\left( \left( -1-\sqrt{3}i \right)\left( \sqrt{3}-i \right) \right) \\
& =\dfrac{1}{2}\left( -\sqrt{3}+i \right)+\dfrac{1}{2}\left( -\sqrt{3}-i \right) \\
& =-\sqrt{3}
\end{align}$
Now, we will change this value of $z$ to the general form of complex number, so that we could observe the real and imaginary parts of $z$and thus could check the options, The general form of writing complex number is $z=a+ib$ , We will convert $z$ into this form and observe it
$\begin{align}
& z=-\sqrt{3} \\
& z=-\sqrt{3}+0i \\
\end{align}$
$\Rightarrow R\left( z \right)=-\sqrt{3}$ and $I\left( z \right)=0$
Hence, $R\left( z \right)<0$ and $I\left( z \right)=0$
(a) is not correct as $R\left( z \right)<0$
(b) satisfies that $R\left( z \right)<0$ but , $I\left( z \right)$ is not greater than 0 , it could be correct if it says $I\left( z \right)\ge 0$
(c) is not correct
So, the correct answer is “Option d”.
Note: The alternative for this question is to expand $z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{5}}$ directly with the binomial expansion formula and then proceed further as same . The binomial expansion formula is used to expand large powers and is given by
${{\left( a+b \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{a}^{n}}{{b}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{a}^{n-1}}{{b}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{a}^{n-2}}{{b}^{2}}+...+\left( \begin{matrix}
n \\
n-1 \\
\end{matrix} \right){{a}^{1}}{{b}^{n-1}}+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{a}^{0}}{{b}^{n}}$
Complete step-by-step answer:
We are given a complex number of the form
$z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{5}}$
And we have to observe its real and imaginary parts so first we have to simplify it .
Consider this complex number and expand the terms involving powers to simplify the complex number , and get
$\begin{align}
& z=\dfrac{1}{{{2}^{5}}}{{\left( \sqrt{3}+i \right)}^{5}}+\dfrac{1}{{{2}^{5}}}{{\left( \sqrt{3}-i \right)}^{5}} \\
& =\dfrac{1}{{{2}^{5}}}\left( {{\left( \sqrt{3}+i \right)}^{2}}{{\left( \sqrt{3}+i \right)}^{2}}\left( \sqrt{3}+i \right) \right)+\dfrac{1}{{{2}^{5}}}\left( {{\left( \sqrt{3}-i \right)}^{2}}{{\left( \sqrt{3}-i \right)}^{2}}\left( \sqrt{3}-i \right) \right) \\
& =\dfrac{1}{{{2}^{5}}}\left( {{\left( 2+2\sqrt{3}i \right)}^{2}}\left( \sqrt{3}+i \right) \right)+\dfrac{1}{{{2}^{5}}}\left( {{\left( 2-2\sqrt{3}i \right)}^{2}}\left( \sqrt{3}-i \right) \right) \\
& =\dfrac{1}{{{2}^{3}}}\left( {{\left( 1+\sqrt{3}i \right)}^{2}}\left( \sqrt{3}+i \right) \right)+\dfrac{1}{{{2}^{3}}}\left( {{\left( 1-\sqrt{3}i \right)}^{2}}\left( \sqrt{3}-i \right) \right) \\
& =\dfrac{1}{{{2}^{2}}}\left( \left( -1+\sqrt{3}i \right)\left( \sqrt{3}+i \right) \right)+\dfrac{1}{{{2}^{2}}}\left( \left( -1-\sqrt{3}i \right)\left( \sqrt{3}-i \right) \right) \\
& =\dfrac{1}{2}\left( -\sqrt{3}+i \right)+\dfrac{1}{2}\left( -\sqrt{3}-i \right) \\
& =-\sqrt{3}
\end{align}$
Now, we will change this value of $z$ to the general form of complex number, so that we could observe the real and imaginary parts of $z$and thus could check the options, The general form of writing complex number is $z=a+ib$ , We will convert $z$ into this form and observe it
$\begin{align}
& z=-\sqrt{3} \\
& z=-\sqrt{3}+0i \\
\end{align}$
$\Rightarrow R\left( z \right)=-\sqrt{3}$ and $I\left( z \right)=0$
Hence, $R\left( z \right)<0$ and $I\left( z \right)=0$
(a) is not correct as $R\left( z \right)<0$
(b) satisfies that $R\left( z \right)<0$ but , $I\left( z \right)$ is not greater than 0 , it could be correct if it says $I\left( z \right)\ge 0$
(c) is not correct
So, the correct answer is “Option d”.
Note: The alternative for this question is to expand $z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{1}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{5}}$ directly with the binomial expansion formula and then proceed further as same . The binomial expansion formula is used to expand large powers and is given by
${{\left( a+b \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{a}^{n}}{{b}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{a}^{n-1}}{{b}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{a}^{n-2}}{{b}^{2}}+...+\left( \begin{matrix}
n \\
n-1 \\
\end{matrix} \right){{a}^{1}}{{b}^{n-1}}+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{a}^{0}}{{b}^{n}}$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
A deep narrow valley with steep sides formed as a result class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
