
Let ${z_1},{z_2},{z_3} \in C$ and $f\left( {{z_1},{z_2},{z_3}} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&1&1 \\
{{z_1}}&{{z_2}}&{{z_3}} \\
{{{\bar z}_1}}&{{{\bar z}_2}}&{{{\bar z}_3}}
\end{array}} \right|$ where $\operatorname{sgn} x = \dfrac{x}{{\left| x \right|}}$ if, $x \ne 0{\text{ and }}\operatorname{sgn} \left( 0 \right) = 0$, then for $a \in C$
$\left( a \right)f\left( {{z_1},{z_2},{z_3}} \right) = f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right)$
$\left( b \right)f\left( {{z_1},{z_2},{z_3}} \right) = \left| a \right|f\left( {{z_1},{z_2},{z_3}} \right)$
$\left( c \right)f\left( {{z_1},{z_2},{z_3}} \right) = \left| a \right|f\left( {{a_1},{a_2},{a_3}} \right)$ where ${a_1},{a_2},{a_3}$ is a permutation of ${z_1},{z_2},{z_3}$
$\left( d \right)$ None of these.
Answer
483.9k+ views
Hint: In this particular question use the concept of determinant simplification using some basic determinant rules such as \[{C_2} \to {C_2} - {C_1},{C_3} \to {C_3} - {C_1}\], then check options one by one so use these concepts to reach the solution of the question.
Complete step by step answer:
Given data:
$f\left( {{z_1},{z_2},{z_3}} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&1&1 \\
{{z_1}}&{{z_2}}&{{z_3}} \\
{{{\bar z}_1}}&{{{\bar z}_2}}&{{{\bar z}_3}}
\end{array}} \right|$
Now apply determinant rule i.e. \[{C_2} \to {C_2} - {C_1},{C_3} \to {C_3} - {C_1}\] so we have,
$f\left( {{z_1},{z_2},{z_3}} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&0&0 \\
{{z_1}}&{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_1}}&{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right|$
Now expand the determinant we have,
$f\left( {{z_1},{z_2},{z_3}} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&0&0 \\
{{z_1}}&{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_1}}&{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right| = \operatorname{sgn} \left( {1\left| {\begin{array}{*{20}{c}}
{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right| - 0 + 0} \right)$
$f\left( {{z_1},{z_2},{z_3}} \right) = \operatorname{sgn} \left( {1\left| {\begin{array}{*{20}{c}}
{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right|} \right) = \operatorname{sgn} \left[ {\left( {{z_2} - {z_1}} \right)\left( {{{\bar z}_3} - {{\bar z}_1}} \right) - \left( {{z_3} - {z_1}} \right)\left( {{{\bar z}_2} - {{\bar z}_1}} \right)} \right]$........ (1)
Now consider option (a)
$ \Rightarrow f\left( {{z_1},{z_2},{z_3}} \right) = f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right)$
So from equation (1) we have,
$ \Rightarrow \operatorname{sgn} \left[ {\left( {{z_2} - {z_1}} \right)\left( {{{\bar z}_3} - {{\bar z}_1}} \right) - \left( {{z_3} - {z_1}} \right)\left( {{{\bar z}_2} - {{\bar z}_1}} \right)} \right] = f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right)$
Now consider the RHS of the above equation we have,
$ \Rightarrow f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right)$
Now if, $f\left( {{z_1},{z_2},{z_3}} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&1&1 \\
{{z_1}}&{{z_2}}&{{z_3}} \\
{{{\bar z}_1}}&{{{\bar z}_2}}&{{{\bar z}_3}}
\end{array}} \right|$
$ \Rightarrow f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&1&1 \\
{{z_1} + a}&{{z_2} + a}&{{z_3} + a} \\
{{{\bar z}_1} + a}&{{{\bar z}_2} + a}&{{{\bar z}_3} + a}
\end{array}} \right|$
Now apply determinant rule i.e. \[{C_2} \to {C_2} - {C_1},{C_3} \to {C_3} - {C_1}\] so we have,
$ \Rightarrow f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&0&0 \\
{{z_1} + a}&{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_1} + a}&{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right|$
Now expand the determinant we have,
$ \Rightarrow f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&0&0 \\
{{z_1} + a}&{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_1} + a}&{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right| = \operatorname{sgn} \left( {1\left| {\begin{array}{*{20}{c}}
{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right| - 0 + 0} \right)$
$ \Rightarrow f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right) = \operatorname{sgn} \left( {1\left| {\begin{array}{*{20}{c}}
{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right|} \right) = \operatorname{sgn} \left[ {\left( {{z_2} - {z_1}} \right)\left( {{{\bar z}_3} - {{\bar z}_1}} \right) - \left( {{z_3} - {z_1}} \right)\left( {{{\bar z}_2} - {{\bar z}_1}} \right)} \right]$
= LHS
Hence, $f\left( {{z_1},{z_2},{z_3}} \right) = f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right)$
So this is the required answer.
So, the correct answer is “Option A”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic determinant rule i.e. how to simplify the determinant, how to expand the determinant which is all stated above, so simply apply them and simplify the given problem then also apply these rules as well as in the options we will get the required answer.
Complete step by step answer:
Given data:
$f\left( {{z_1},{z_2},{z_3}} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&1&1 \\
{{z_1}}&{{z_2}}&{{z_3}} \\
{{{\bar z}_1}}&{{{\bar z}_2}}&{{{\bar z}_3}}
\end{array}} \right|$
Now apply determinant rule i.e. \[{C_2} \to {C_2} - {C_1},{C_3} \to {C_3} - {C_1}\] so we have,
$f\left( {{z_1},{z_2},{z_3}} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&0&0 \\
{{z_1}}&{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_1}}&{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right|$
Now expand the determinant we have,
$f\left( {{z_1},{z_2},{z_3}} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&0&0 \\
{{z_1}}&{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_1}}&{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right| = \operatorname{sgn} \left( {1\left| {\begin{array}{*{20}{c}}
{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right| - 0 + 0} \right)$
$f\left( {{z_1},{z_2},{z_3}} \right) = \operatorname{sgn} \left( {1\left| {\begin{array}{*{20}{c}}
{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right|} \right) = \operatorname{sgn} \left[ {\left( {{z_2} - {z_1}} \right)\left( {{{\bar z}_3} - {{\bar z}_1}} \right) - \left( {{z_3} - {z_1}} \right)\left( {{{\bar z}_2} - {{\bar z}_1}} \right)} \right]$........ (1)
Now consider option (a)
$ \Rightarrow f\left( {{z_1},{z_2},{z_3}} \right) = f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right)$
So from equation (1) we have,
$ \Rightarrow \operatorname{sgn} \left[ {\left( {{z_2} - {z_1}} \right)\left( {{{\bar z}_3} - {{\bar z}_1}} \right) - \left( {{z_3} - {z_1}} \right)\left( {{{\bar z}_2} - {{\bar z}_1}} \right)} \right] = f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right)$
Now consider the RHS of the above equation we have,
$ \Rightarrow f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right)$
Now if, $f\left( {{z_1},{z_2},{z_3}} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&1&1 \\
{{z_1}}&{{z_2}}&{{z_3}} \\
{{{\bar z}_1}}&{{{\bar z}_2}}&{{{\bar z}_3}}
\end{array}} \right|$
$ \Rightarrow f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&1&1 \\
{{z_1} + a}&{{z_2} + a}&{{z_3} + a} \\
{{{\bar z}_1} + a}&{{{\bar z}_2} + a}&{{{\bar z}_3} + a}
\end{array}} \right|$
Now apply determinant rule i.e. \[{C_2} \to {C_2} - {C_1},{C_3} \to {C_3} - {C_1}\] so we have,
$ \Rightarrow f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&0&0 \\
{{z_1} + a}&{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_1} + a}&{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right|$
Now expand the determinant we have,
$ \Rightarrow f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right) = \operatorname{sgn} \left| {\begin{array}{*{20}{c}}
1&0&0 \\
{{z_1} + a}&{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_1} + a}&{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right| = \operatorname{sgn} \left( {1\left| {\begin{array}{*{20}{c}}
{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right| - 0 + 0} \right)$
$ \Rightarrow f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right) = \operatorname{sgn} \left( {1\left| {\begin{array}{*{20}{c}}
{{z_2} - {z_1}}&{{z_3} - {z_1}} \\
{{{\bar z}_2} - {{\bar z}_1}}&{{{\bar z}_3} - {{\bar z}_1}}
\end{array}} \right|} \right) = \operatorname{sgn} \left[ {\left( {{z_2} - {z_1}} \right)\left( {{{\bar z}_3} - {{\bar z}_1}} \right) - \left( {{z_3} - {z_1}} \right)\left( {{{\bar z}_2} - {{\bar z}_1}} \right)} \right]$
= LHS
Hence, $f\left( {{z_1},{z_2},{z_3}} \right) = f\left( {{z_1} + a,{z_2} + a,{z_3} + a} \right)$
So this is the required answer.
So, the correct answer is “Option A”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic determinant rule i.e. how to simplify the determinant, how to expand the determinant which is all stated above, so simply apply them and simplify the given problem then also apply these rules as well as in the options we will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
