
Let \[z = x + iy\] be a complex number where \[x\] and \[y\] are integers. Then the area of the rectangle whose vertices are the roots of the equation \[\bar z{z^3} + z{\bar z^3} = 350\] is
A. 48
B. 32
C. 40
D. 80
Answer
591k+ views
Hint: Try to take the common terms and apply the formula \[\bar zz = z\bar z = {\left| z \right|^2}\] to reduce the given equation. Then substitute the value of \[z\& \bar z\] to find the equations in terms of \[x\& y\]. Solve those obtained equations to get the vertices of the rectangle and then find its equation to get the final answer.
Complete step-by-step answer:
Given that \[z = x + iy\] be a complex number where \[x\] and \[y\] are integers. So, we have \[\bar z = x - iy\].
Also given that \[\bar z{z^3} + z{\bar z^3} = 350\].
We know that for a complex number \[\bar zz = z\bar z = {\left| z \right|^2}\]. By using this formula, we have
\[
\Rightarrow \left( {\bar zz} \right){z^2} + \left( {z\bar z} \right){z^2} = 350 \\
\Rightarrow \left( {\bar zz} \right){z^2} + \left( {z\bar z} \right){{\bar z}^2} = 350 \\
\Rightarrow {\left| z \right|^2}{z^2} + {\left| z \right|^2}{{\bar z}^2} = 350 \\
\Rightarrow {\left| z \right|^2}\left( {{z^2} + {{\bar z}^2}} \right) = 350 \\
\]
Substituting \[z = x + iy\] and \[\bar z = x - iy\] we have
\[
\Rightarrow {\left| {x + iy} \right|^2}\left[ {{{\left( {x + iy} \right)}^2} + {{\left( {x - iy} \right)}^2}} \right] = 350 \\
\Rightarrow {\left( {\sqrt {{x^2} + {y^2}} } \right)^2}\left[ {{{\left( {x + iy} \right)}^2} + {{\left( {x - iy} \right)}^2}} \right] = 350\,{\text{ }}\left[ {\because \left| z \right| = \left| {a + ib} \right| = \sqrt {{a^2} + {b^2}} } \right] \\
\Rightarrow \left( {{x^2} + {y^2}} \right)\left[ {\left( {{x^2} + 2xiy + {i^2}{y^2}} \right) + \left( {x - 2xiy + {i^2}{y^2}} \right)} \right] = 350 \\
\Rightarrow \left( {{x^2} + {y^2}} \right)\left( {{x^2} + {x^2} + 2xiy - 2xiy - {y^2} - {y^2}} \right) = 350{\text{ }}\left[ {\because {i^2} = - 1} \right] \\
\Rightarrow \left( {{x^2} + {y^2}} \right)\left( {2{x^2} - 2{y^2}} \right) = 350 \\
\Rightarrow \left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right)2 = 350 \\
\Rightarrow \left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right) = \dfrac{{350}}{2} = 175 \\
\]
Since, \[x\] and \[y\] are integers we can have two possible ways.
\[\left( {{x^2} + {y^2}} \right) = 25\& \left( {{x^2} - {y^2}} \right) = 7\] or \[\left( {{x^2} + {y^2}} \right) = 35\& \left( {{x^2} - {y^2}} \right) = 5\]
Now consider, \[\left( {{x^2} + {y^2}} \right) = 25\& \left( {{x^2} - {y^2}} \right) = 7\]. Adding both the equations, we have
\[
\Rightarrow \left( {{x^2} + {y^2}} \right) + \left( {{x^2} - {y^2}} \right) = 25 + 7 \\
\Rightarrow {x^2} + {x^2} + {y^2} - {y^2} = 32 \\
\Rightarrow 2{x^2} = 32 \\
\Rightarrow {x^2} = \dfrac{{32}}{2} = 16 \\
\therefore x = \sqrt {16} = \pm 4...............\left( 1 \right) \\
\]
Subtracting the equation \[{x^2} - {y^2} = 7\] from \[{x^2} + {y^2} = 25\], we get
\[
\Rightarrow \left( {{x^2} + {y^2}} \right) - \left( {{x^2} - {y^2}} \right) = 25 - 7 \\
\Rightarrow {x^2} - {x^2} + {y^2} + {y^2} = 16 \\
\Rightarrow 2{y^2} = 18 \\
\Rightarrow {y^2} = \dfrac{{18}}{2} = 9 \\
\therefore y = \sqrt 9 = \pm 3 \\
\]
Now, \[\left( {{x^2} + {y^2}} \right) = 35\& \left( {{x^2} - {y^2}} \right) = 5\]. Adding both the equations, we have
\[
\Rightarrow \left( {{x^2} + {y^2}} \right) + \left( {{x^2} - {y^2}} \right) = 35 + 5 \\
\Rightarrow {x^2} + {x^2} + {y^2} - {y^2} = 40 \\
\Rightarrow 2{x^2} = 40 \\
\Rightarrow {x^2} = \dfrac{{40}}{2} = 20 \\
\therefore x = \sqrt {20} \\
\]
So, for the equations \[\left( {{x^2} + {y^2}} \right) = 35\& \left( {{x^2} - {y^2}} \right) = 5\] we are not getting the values of \[x\] and \[y\] as integers.
Therefore, the vertices of the rectangle are \[\left( {x,y} \right) = \left( {4,3} \right),\left( { - 4,3} \right),\left( { - 4, - 3} \right),\left( {4, - 3} \right)\]. Let \[l\] be the length and \[b\] be the width of the rectangle as shown in the figure.
So, \[l\] is the distance between the points \[\left( {4,3} \right),\left( { - 4,3} \right)\].
Hence \[l = \sqrt {{{\left( { - 4 - 4} \right)}^2} + {{\left( {3 - 3} \right)}^2}} = \sqrt {{{\left( { - 8} \right)}^2} + {{\left( 0 \right)}^2}} = 8\]
And \[b\] is the distance between the points \[\left( {4,3} \right),\left( {4, - 3} \right)\]
Hence \[b = \sqrt {{{\left( {4 - 4} \right)}^2} + {{\left( { - 3 - 3} \right)}^2}} = \sqrt {{{\left( 0 \right)}^2} + {{\left( { - 6} \right)}^2}} = \sqrt {{6^2}} = 6\]
We know that if \[l\& b\] are length and breadth of rectangle respectively then its area is given by \[l \times b\]
So, the area of the rectangle formed is equal to \[8 \times 6 = 48\].
Thus, the area of the rectangle formed with the vertices is 48 square units.
Note: The distance between the two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is given by \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]. If \[l\& b\] are the length and breadth of the rectangle respectively then its area is given by \[l \times b\] square units. Always write the units after the area of the rectangle.
Complete step-by-step answer:
Given that \[z = x + iy\] be a complex number where \[x\] and \[y\] are integers. So, we have \[\bar z = x - iy\].
Also given that \[\bar z{z^3} + z{\bar z^3} = 350\].
We know that for a complex number \[\bar zz = z\bar z = {\left| z \right|^2}\]. By using this formula, we have
\[
\Rightarrow \left( {\bar zz} \right){z^2} + \left( {z\bar z} \right){z^2} = 350 \\
\Rightarrow \left( {\bar zz} \right){z^2} + \left( {z\bar z} \right){{\bar z}^2} = 350 \\
\Rightarrow {\left| z \right|^2}{z^2} + {\left| z \right|^2}{{\bar z}^2} = 350 \\
\Rightarrow {\left| z \right|^2}\left( {{z^2} + {{\bar z}^2}} \right) = 350 \\
\]
Substituting \[z = x + iy\] and \[\bar z = x - iy\] we have
\[
\Rightarrow {\left| {x + iy} \right|^2}\left[ {{{\left( {x + iy} \right)}^2} + {{\left( {x - iy} \right)}^2}} \right] = 350 \\
\Rightarrow {\left( {\sqrt {{x^2} + {y^2}} } \right)^2}\left[ {{{\left( {x + iy} \right)}^2} + {{\left( {x - iy} \right)}^2}} \right] = 350\,{\text{ }}\left[ {\because \left| z \right| = \left| {a + ib} \right| = \sqrt {{a^2} + {b^2}} } \right] \\
\Rightarrow \left( {{x^2} + {y^2}} \right)\left[ {\left( {{x^2} + 2xiy + {i^2}{y^2}} \right) + \left( {x - 2xiy + {i^2}{y^2}} \right)} \right] = 350 \\
\Rightarrow \left( {{x^2} + {y^2}} \right)\left( {{x^2} + {x^2} + 2xiy - 2xiy - {y^2} - {y^2}} \right) = 350{\text{ }}\left[ {\because {i^2} = - 1} \right] \\
\Rightarrow \left( {{x^2} + {y^2}} \right)\left( {2{x^2} - 2{y^2}} \right) = 350 \\
\Rightarrow \left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right)2 = 350 \\
\Rightarrow \left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right) = \dfrac{{350}}{2} = 175 \\
\]
Since, \[x\] and \[y\] are integers we can have two possible ways.
\[\left( {{x^2} + {y^2}} \right) = 25\& \left( {{x^2} - {y^2}} \right) = 7\] or \[\left( {{x^2} + {y^2}} \right) = 35\& \left( {{x^2} - {y^2}} \right) = 5\]
Now consider, \[\left( {{x^2} + {y^2}} \right) = 25\& \left( {{x^2} - {y^2}} \right) = 7\]. Adding both the equations, we have
\[
\Rightarrow \left( {{x^2} + {y^2}} \right) + \left( {{x^2} - {y^2}} \right) = 25 + 7 \\
\Rightarrow {x^2} + {x^2} + {y^2} - {y^2} = 32 \\
\Rightarrow 2{x^2} = 32 \\
\Rightarrow {x^2} = \dfrac{{32}}{2} = 16 \\
\therefore x = \sqrt {16} = \pm 4...............\left( 1 \right) \\
\]
Subtracting the equation \[{x^2} - {y^2} = 7\] from \[{x^2} + {y^2} = 25\], we get
\[
\Rightarrow \left( {{x^2} + {y^2}} \right) - \left( {{x^2} - {y^2}} \right) = 25 - 7 \\
\Rightarrow {x^2} - {x^2} + {y^2} + {y^2} = 16 \\
\Rightarrow 2{y^2} = 18 \\
\Rightarrow {y^2} = \dfrac{{18}}{2} = 9 \\
\therefore y = \sqrt 9 = \pm 3 \\
\]
Now, \[\left( {{x^2} + {y^2}} \right) = 35\& \left( {{x^2} - {y^2}} \right) = 5\]. Adding both the equations, we have
\[
\Rightarrow \left( {{x^2} + {y^2}} \right) + \left( {{x^2} - {y^2}} \right) = 35 + 5 \\
\Rightarrow {x^2} + {x^2} + {y^2} - {y^2} = 40 \\
\Rightarrow 2{x^2} = 40 \\
\Rightarrow {x^2} = \dfrac{{40}}{2} = 20 \\
\therefore x = \sqrt {20} \\
\]
So, for the equations \[\left( {{x^2} + {y^2}} \right) = 35\& \left( {{x^2} - {y^2}} \right) = 5\] we are not getting the values of \[x\] and \[y\] as integers.
Therefore, the vertices of the rectangle are \[\left( {x,y} \right) = \left( {4,3} \right),\left( { - 4,3} \right),\left( { - 4, - 3} \right),\left( {4, - 3} \right)\]. Let \[l\] be the length and \[b\] be the width of the rectangle as shown in the figure.
So, \[l\] is the distance between the points \[\left( {4,3} \right),\left( { - 4,3} \right)\].
Hence \[l = \sqrt {{{\left( { - 4 - 4} \right)}^2} + {{\left( {3 - 3} \right)}^2}} = \sqrt {{{\left( { - 8} \right)}^2} + {{\left( 0 \right)}^2}} = 8\]
And \[b\] is the distance between the points \[\left( {4,3} \right),\left( {4, - 3} \right)\]
Hence \[b = \sqrt {{{\left( {4 - 4} \right)}^2} + {{\left( { - 3 - 3} \right)}^2}} = \sqrt {{{\left( 0 \right)}^2} + {{\left( { - 6} \right)}^2}} = \sqrt {{6^2}} = 6\]
We know that if \[l\& b\] are length and breadth of rectangle respectively then its area is given by \[l \times b\]
So, the area of the rectangle formed is equal to \[8 \times 6 = 48\].
Thus, the area of the rectangle formed with the vertices is 48 square units.
Note: The distance between the two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is given by \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]. If \[l\& b\] are the length and breadth of the rectangle respectively then its area is given by \[l \times b\] square units. Always write the units after the area of the rectangle.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

