
Let we have the vectors $\vec{a}=\hat{i}+4\hat{j}+2\hat{k}$ , $\vec{b}=3\hat{i}-2\hat{j}+7\hat{k}$ and $\vec{c}=2\hat{i}-\hat{j}+4\hat{k}$. Find a vector $\vec{d}$ which is perpendicular to both $\vec{a},\vec{b}$ also $\vec{c}\cdot \vec{d}=15.$\[\]
Answer
554.7k+ views
Hint: Take $\vec{d}$ as ${{d}_{1}}\hat{i}+{{d}_{2}}\hat{j}+{{d}_{3}}\hat{k}$. Use the fact that two vectors which are perpendicular, sum of product of respective components will be zero $\left( {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}=0 \right)$ for given $\vec{a}$ and $\vec{b}$ . Use $\vec{c}\cdot \vec{d}=15.$ You will obtain $3\times 3$ system of linear equations in ${{d}_{1}},{{d}_{2}},{{d}_{3}}.$ Solve it by Kramer’s rule to get $\vec{d}$.\[\]
Complete step-by-step solution:
We know that the dot product of two vectors $\vec{a}$ and $\vec{b}$ is denoted as $\vec{a}\cdot \vec{b}$ and is given by $\vec{a}\cdot \vec{b}=\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta =ab\cos \theta $ where $\theta $ is the angle between the vectors $\vec{a}$ and $\vec{b}$. If they are perpendicular r to each other $\vec{a}\cdot \vec{b}=ab\cos {{90}^{\circ }}=0$\[\]
We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are orthogonal unit vectors(vectors with magnitude 1) along $x,y$ and $z$ axes respectively. So the magnitude of these vectors is $\left| {\hat{i}} \right|=\left| {\hat{j}} \right|=\left| {\hat{k}} \right|=1 $. The vectors just like their axes are perpendicular to each other which mean any angle among$\hat{i}$,$\hat{j}$ and $\hat{k}$is ${{90}^{\circ }}.$ So $\hat{i}\cdot \hat{i}=\hat{j}\cdot \hat{j}=\hat{k}\cdot \hat{k}=1\cdot 1\cdot \cos {{0}^{\circ }}=1$ and $\hat{i}\cdot \hat{j}=\hat{j}\cdot \hat{i}=\hat{k}\cdot \hat{i}=0$\[\]
We can express any vector as a linear combination of orthogonal unit vectors. If $\vec{a}$ is expressed as $\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ and $\vec{b}$ is expressed as $\vec{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ where ${{a}_{1}},{{a}_{2}},{{a}_{3}}$ are the magnitude of components of the vector $\vec{a}$ and ${{b}_{1}},{{b}_{2}},{{b}_{3}}$ are the magnitude of components the vector $\vec{b}$ along the direction of unit orthogonal vectors $\hat{i}$,$\hat{j}$ and $\hat{k}$ . If $\vec{a}$ and $\vec{b}$ are going orthogonal when
\[\begin{align}
& \vec{a}\cdot \vec{b}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)\cdot \left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)=0 \\
& \Rightarrow {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}=0...(1) \\
\end{align}\]
We know the $3\times 3$ linear system of equations with three unknowns $x,y,z$ in matrix from as,
\[\left[ \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
{{d}_{1}} \\
{{d}_{2}} \\
{{d}_{2}} \\
\end{matrix} \right]\]
The unique solution of the above system is given by $x=\dfrac{{{\Delta }_{a}}}{\Delta },y=\dfrac{{{\Delta }_{b}}}{\Delta }x=\dfrac{{{\Delta }_{c}}}{\Delta }$ where $\Delta $ is determinant of the coefficient matrix
\[\Delta =\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\]
The other determinants are
\[{{\Delta }_{a}}=\left| \begin{matrix}
{{d}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{d}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{d}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|,{{\Delta }_{b}}=\left| \begin{matrix}
{{a}_{1}} & {{d}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{d}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{d}_{3}} & {{c}_{3}} \\
\end{matrix} \right|,{{\Delta }_{c}}=\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{d}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{d}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{d}_{3}} \\
\end{matrix} \right|\]
Let us take the vector $\vec{d}$ as ${{d}_{1}}\hat{i}+{{d}_{2}}\hat{j}+{{d}_{3}}\hat{k}$. It is given in the question that $\vec{d}$ is perpendicular to $\vec{a}=\hat{i}+4\hat{j}+2\hat{k}$ . So
\[{{d}_{1}}+4{{d}_{2}}+2{{d}_{3}}=0...(1)\]
It is given that the vector $\vec{d}$ is perpendicular $\vec{b}=3\hat{i}-2\hat{j}+7\hat{k}$ . So
\[3{{d}_{1}}-2{{d}_{2}}+7{{d}_{3}}=0...(2)\]
It is also given that $\vec{c}\cdot \vec{d}=15.$ So
\[ 3{{d}_{1}}-{{d}_{2}}+4{{d}_{3}}=15...(3)\]
The obtained equations (1) (2) and (3) form a linear system of equations with three unknowns
The system of equations in the matrix form is ,
\[\left[ \begin{matrix}
1 & 4 & 2 \\
3 & -2 & 7 \\
2 & -1 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
{{d}_{1}} \\
{{d}_{2}} \\
{{d}_{3}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
0 \\
15 \\
\end{matrix} \right]\]
We solve the above system of equations with Cramer’s rule. We first find the determinant of the coefficient matrix
\[\Delta =\left| \begin{matrix}
1 & 4 & 2 \\
3 & -2 & 7 \\
2 & -1 & 4 \\
\end{matrix} \right|=1\left( -8+7 \right)-4\left( 12-14 \right)+2\left( -3+4 \right)=9\]
We find the other determinants
\[\begin{align}
& {{\Delta }_{a}}=\left| \begin{matrix}
0 & 4 & 2 \\
0 & -2 & 7 \\
15 & -1 & 4 \\
\end{matrix} \right|=15\left( 16-\left( -2 \right) \right)=480, \\
& {{\Delta }_{b}}=\left| \begin{matrix}
1 & 0 & 2 \\
3 & 0 & 7 \\
2 & 15 & 4 \\
\end{matrix} \right|=-15\left( 7-6 \right)=-15, \\
& {{\Delta }_{c}}=\left| \begin{matrix}
1 & 4 & 0 \\
3 & -2 & 0 \\
2 & -1 & 15 \\
\end{matrix} \right|=15\left( -2-12 \right)=-210 \\
\end{align}\]
So the solutions of the equations are
\[\begin{align}
& {{d}_{1}}=\dfrac{{{\Delta }_{a}}}{\Delta }=\dfrac{480}{9}=\dfrac{160}{3} \\
& {{d}_{2}}=\dfrac{{{\Delta }_{b}}}{\Delta }=\dfrac{-15}{9}=\dfrac{-5}{3} \\
& {{d}_{3}}=\dfrac{{{\Delta }_{c}}}{\Delta }=\dfrac{-210}{9}=\dfrac{-70}{3} \\
\end{align}\]
So the vector $\vec{d}$ is $\vec{d}=\dfrac{160}{3}\hat{i}-\dfrac{5}{3}\hat{j}-\dfrac{70}{3}\hat{k}$\[\]
Note: The perpendicular condition for two vectors with $n$ component is given as ${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+...+{{a}_{n}}{{b}_{n}}=0$. We can also taking $\vec{d}=k\left( \vec{a}\times \vec{b} \right)$ where $k$ is a real number and $\vec{a}\times \vec{b}$ is the cross product. Then we use $\vec{d}$ in $\vec{c}\cdot \vec{d}=15$ to find $k$. We should note that dot product is commutative but cross-product is not.
Complete step-by-step solution:
We know that the dot product of two vectors $\vec{a}$ and $\vec{b}$ is denoted as $\vec{a}\cdot \vec{b}$ and is given by $\vec{a}\cdot \vec{b}=\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta =ab\cos \theta $ where $\theta $ is the angle between the vectors $\vec{a}$ and $\vec{b}$. If they are perpendicular r to each other $\vec{a}\cdot \vec{b}=ab\cos {{90}^{\circ }}=0$\[\]
We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are orthogonal unit vectors(vectors with magnitude 1) along $x,y$ and $z$ axes respectively. So the magnitude of these vectors is $\left| {\hat{i}} \right|=\left| {\hat{j}} \right|=\left| {\hat{k}} \right|=1 $. The vectors just like their axes are perpendicular to each other which mean any angle among$\hat{i}$,$\hat{j}$ and $\hat{k}$is ${{90}^{\circ }}.$ So $\hat{i}\cdot \hat{i}=\hat{j}\cdot \hat{j}=\hat{k}\cdot \hat{k}=1\cdot 1\cdot \cos {{0}^{\circ }}=1$ and $\hat{i}\cdot \hat{j}=\hat{j}\cdot \hat{i}=\hat{k}\cdot \hat{i}=0$\[\]
We can express any vector as a linear combination of orthogonal unit vectors. If $\vec{a}$ is expressed as $\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ and $\vec{b}$ is expressed as $\vec{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ where ${{a}_{1}},{{a}_{2}},{{a}_{3}}$ are the magnitude of components of the vector $\vec{a}$ and ${{b}_{1}},{{b}_{2}},{{b}_{3}}$ are the magnitude of components the vector $\vec{b}$ along the direction of unit orthogonal vectors $\hat{i}$,$\hat{j}$ and $\hat{k}$ . If $\vec{a}$ and $\vec{b}$ are going orthogonal when
\[\begin{align}
& \vec{a}\cdot \vec{b}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)\cdot \left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)=0 \\
& \Rightarrow {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}=0...(1) \\
\end{align}\]
We know the $3\times 3$ linear system of equations with three unknowns $x,y,z$ in matrix from as,
\[\left[ \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
{{d}_{1}} \\
{{d}_{2}} \\
{{d}_{2}} \\
\end{matrix} \right]\]
The unique solution of the above system is given by $x=\dfrac{{{\Delta }_{a}}}{\Delta },y=\dfrac{{{\Delta }_{b}}}{\Delta }x=\dfrac{{{\Delta }_{c}}}{\Delta }$ where $\Delta $ is determinant of the coefficient matrix
\[\Delta =\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\]
The other determinants are
\[{{\Delta }_{a}}=\left| \begin{matrix}
{{d}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{d}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{d}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|,{{\Delta }_{b}}=\left| \begin{matrix}
{{a}_{1}} & {{d}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{d}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{d}_{3}} & {{c}_{3}} \\
\end{matrix} \right|,{{\Delta }_{c}}=\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{d}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{d}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{d}_{3}} \\
\end{matrix} \right|\]
Let us take the vector $\vec{d}$ as ${{d}_{1}}\hat{i}+{{d}_{2}}\hat{j}+{{d}_{3}}\hat{k}$. It is given in the question that $\vec{d}$ is perpendicular to $\vec{a}=\hat{i}+4\hat{j}+2\hat{k}$ . So
\[{{d}_{1}}+4{{d}_{2}}+2{{d}_{3}}=0...(1)\]
It is given that the vector $\vec{d}$ is perpendicular $\vec{b}=3\hat{i}-2\hat{j}+7\hat{k}$ . So
\[3{{d}_{1}}-2{{d}_{2}}+7{{d}_{3}}=0...(2)\]
It is also given that $\vec{c}\cdot \vec{d}=15.$ So
\[ 3{{d}_{1}}-{{d}_{2}}+4{{d}_{3}}=15...(3)\]
The obtained equations (1) (2) and (3) form a linear system of equations with three unknowns
The system of equations in the matrix form is ,
\[\left[ \begin{matrix}
1 & 4 & 2 \\
3 & -2 & 7 \\
2 & -1 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
{{d}_{1}} \\
{{d}_{2}} \\
{{d}_{3}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
0 \\
15 \\
\end{matrix} \right]\]
We solve the above system of equations with Cramer’s rule. We first find the determinant of the coefficient matrix
\[\Delta =\left| \begin{matrix}
1 & 4 & 2 \\
3 & -2 & 7 \\
2 & -1 & 4 \\
\end{matrix} \right|=1\left( -8+7 \right)-4\left( 12-14 \right)+2\left( -3+4 \right)=9\]
We find the other determinants
\[\begin{align}
& {{\Delta }_{a}}=\left| \begin{matrix}
0 & 4 & 2 \\
0 & -2 & 7 \\
15 & -1 & 4 \\
\end{matrix} \right|=15\left( 16-\left( -2 \right) \right)=480, \\
& {{\Delta }_{b}}=\left| \begin{matrix}
1 & 0 & 2 \\
3 & 0 & 7 \\
2 & 15 & 4 \\
\end{matrix} \right|=-15\left( 7-6 \right)=-15, \\
& {{\Delta }_{c}}=\left| \begin{matrix}
1 & 4 & 0 \\
3 & -2 & 0 \\
2 & -1 & 15 \\
\end{matrix} \right|=15\left( -2-12 \right)=-210 \\
\end{align}\]
So the solutions of the equations are
\[\begin{align}
& {{d}_{1}}=\dfrac{{{\Delta }_{a}}}{\Delta }=\dfrac{480}{9}=\dfrac{160}{3} \\
& {{d}_{2}}=\dfrac{{{\Delta }_{b}}}{\Delta }=\dfrac{-15}{9}=\dfrac{-5}{3} \\
& {{d}_{3}}=\dfrac{{{\Delta }_{c}}}{\Delta }=\dfrac{-210}{9}=\dfrac{-70}{3} \\
\end{align}\]
So the vector $\vec{d}$ is $\vec{d}=\dfrac{160}{3}\hat{i}-\dfrac{5}{3}\hat{j}-\dfrac{70}{3}\hat{k}$\[\]
Note: The perpendicular condition for two vectors with $n$ component is given as ${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+...+{{a}_{n}}{{b}_{n}}=0$. We can also taking $\vec{d}=k\left( \vec{a}\times \vec{b} \right)$ where $k$ is a real number and $\vec{a}\times \vec{b}$ is the cross product. Then we use $\vec{d}$ in $\vec{c}\cdot \vec{d}=15$ to find $k$. We should note that dot product is commutative but cross-product is not.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What does the Hymn Ek ONKAR SATNAM KARTA PURAKH NIRBHAU class 12 social science CBSE

How will you obtain OR AND gates from the NAND and class 12 physics CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

Write the differences between asexual and sexual r class 12 biology CBSE

Differentiate between exergonic and endergonic rea class 12 biology CBSE

How do you convert from joules to electron volts class 12 physics CBSE

