
Let we have the vectors as $\vec{a}=3\vec{i}+2\vec{j}+x\vec{k}\text{ and }\vec{b}=\vec{i}-\vec{j}+\vec{k}$ for some real X. Then, $\left| \vec{a}\times \vec{b} \right|=r$ is possible if:
\[\begin{align}
& A.3\sqrt{\dfrac{3}{2}}\text{ }<\text{ }r\text{ }<\text{ }5\sqrt{\dfrac{3}{2}} \\
& B.0\text{ }<\text{ }r\text{ }<\text{ }\sqrt{\dfrac{3}{2}} \\
& C.\sqrt{\dfrac{3}{2}}\text{ }<\text{ }r\text{ }<\text{ 3}\sqrt{\dfrac{3}{2}} \\
& D.r\text{ }\ge \text{ }5\sqrt{\dfrac{3}{2}} \\
\end{align}\]
Answer
507.9k+ views
Hint: Apply cross-multiplication formula in above question and then apply minimum or maximum function rule. For finding minimum or maximum of any given function f (x) = 0, do f'(x) = 0 (i.e. the derivative of function f (x) equals to zero). Here, then we get some value of x. Now, we apply the second derivative test.
Now, once we get the minimum value then introduce the concept of inequality.
Like the given expression will be greater and equal to its minimum value. After doing some minor calculations we will get the final answer.
Complete step-by-step solution:
Now, come to the question, the given vectors are
\[\vec{a}=3\vec{i}+2\vec{j}+x\vec{k}\text{ and }\vec{b}=\vec{i}-\vec{j}+\vec{k}\]
Let us find the cross product as below,
\[\begin{align}
& \left| \vec{a}\times \vec{b} \right|=\left| \begin{matrix}
{\vec{i}} & {\vec{j}} & {\vec{k}} \\
3 & 2 & x \\
1 & -1 & 1 \\
\end{matrix} \right| \\
&\Rightarrow \left| \vec{a}\times \vec{b} \right|=\left( 2+x \right)\vec{i}+\left( x-3 \right)\vec{j}+\left( -5 \right)\vec{k} \\
\end{align}\]
Now,
\[\begin{align}
& \left| \vec{a}\times \vec{b} \right|=\sqrt{{{\left( 2+x \right)}^{2}}+{{\left( x-3 \right)}^{2}}+{{\left( -5 \right)}^{2}}} \\
&\Rightarrow r=\sqrt{{{\left( 2+x \right)}^{2}}+{{\left( x-3 \right)}^{2}}+25} \\
& \Rightarrow \sqrt{2\left( {{x}^{2}}-x+19 \right)} \\
\end{align}\]
Now, let \[f\left( x \right)={{x}^{2}}-x+19=0\]
For finding minimum or maximum of f (x) do
\[\begin{align}
&\Rightarrow f'\left( x \right)=\dfrac{d\left( f\left( x \right) \right)}{dx}=0 \\
&\Rightarrow 2x-1=0 \\
&\Rightarrow x=\dfrac{1}{2} \\
&\Rightarrow f''\left( x \right)=2\text{(+ve)} \\
\end{align}\]
Hence, $x=\dfrac{1}{2}$ for minima.
Here, we have done second derivative test:
i) If $f''\left( a \right)\text{ }>\text{ }0\Rightarrow x=a$ is a point of local minima.
ii) If $f''\left( a \right)\text{ }<\text{ }0\Rightarrow x=a$ is a point of local maxima.
In this way, we can use derivative test for ascertaining maxima/minima.
\[\begin{align}
& f{{\left( x \right)}_{\text{minimum}}}={{\left( \dfrac{1}{2} \right)}^{2}}-\left( \dfrac{1}{2} \right)+19=\left( \dfrac{75}{4} \right) \\
&\Rightarrow r\ge \sqrt{2{{\left( {{x}^{2}}-x+19 \right)}_{\text{minimum}}}} \\
&\Rightarrow r\ge \sqrt{2\times \dfrac{75}{4}} \\
&\Rightarrow r\ge \sqrt{\dfrac{25\times 3}{2}} \\
&\Rightarrow r\ge 5\sqrt{\dfrac{3}{2}} \\
\end{align}\]
Therefore, option D $r\ge 5\sqrt{\dfrac{3}{2}}$ is the correct answer.
Note: Before start solving the question, students should focus on the options given. This is one of the crucial habit for getting the idea or approach of the question. Like, in our question, options are in inequality forms then the solution will definitely involve the concept of maxima and minima (90% cases). One other major point is vector product of two vectors (cross product).
If \[\vec{a}={{a}_{1}}\vec{i}+{{a}_{2}}\vec{j}+{{a}_{3}}\vec{k}\text{ and }\vec{b}={{b}_{1}}\vec{i}-{{b}_{2}}\vec{j}+{{b}_{3}}\vec{k}\] then
\[\vec{a}\times \vec{b}=\left| \begin{matrix}
{\vec{i}} & {\vec{j}} & {\vec{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|={{x}_{1}}\vec{i}+{{x}_{2}}\vec{j}+{{x}_{3}}\vec{k}\text{ (let)}\]
Then, \[\left| \vec{a}\times \vec{b} \right|=\sqrt{{{\left( {{x}_{1}} \right)}^{2}}+{{\left( {{x}_{2}} \right)}^{2}}+{{\left( {{x}_{3}} \right)}^{2}}}\]
Now, once we get the minimum value then introduce the concept of inequality.
Like the given expression will be greater and equal to its minimum value. After doing some minor calculations we will get the final answer.
Complete step-by-step solution:
Now, come to the question, the given vectors are
\[\vec{a}=3\vec{i}+2\vec{j}+x\vec{k}\text{ and }\vec{b}=\vec{i}-\vec{j}+\vec{k}\]
Let us find the cross product as below,
\[\begin{align}
& \left| \vec{a}\times \vec{b} \right|=\left| \begin{matrix}
{\vec{i}} & {\vec{j}} & {\vec{k}} \\
3 & 2 & x \\
1 & -1 & 1 \\
\end{matrix} \right| \\
&\Rightarrow \left| \vec{a}\times \vec{b} \right|=\left( 2+x \right)\vec{i}+\left( x-3 \right)\vec{j}+\left( -5 \right)\vec{k} \\
\end{align}\]
Now,
\[\begin{align}
& \left| \vec{a}\times \vec{b} \right|=\sqrt{{{\left( 2+x \right)}^{2}}+{{\left( x-3 \right)}^{2}}+{{\left( -5 \right)}^{2}}} \\
&\Rightarrow r=\sqrt{{{\left( 2+x \right)}^{2}}+{{\left( x-3 \right)}^{2}}+25} \\
& \Rightarrow \sqrt{2\left( {{x}^{2}}-x+19 \right)} \\
\end{align}\]
Now, let \[f\left( x \right)={{x}^{2}}-x+19=0\]
For finding minimum or maximum of f (x) do
\[\begin{align}
&\Rightarrow f'\left( x \right)=\dfrac{d\left( f\left( x \right) \right)}{dx}=0 \\
&\Rightarrow 2x-1=0 \\
&\Rightarrow x=\dfrac{1}{2} \\
&\Rightarrow f''\left( x \right)=2\text{(+ve)} \\
\end{align}\]
Hence, $x=\dfrac{1}{2}$ for minima.
Here, we have done second derivative test:
i) If $f''\left( a \right)\text{ }>\text{ }0\Rightarrow x=a$ is a point of local minima.
ii) If $f''\left( a \right)\text{ }<\text{ }0\Rightarrow x=a$ is a point of local maxima.
In this way, we can use derivative test for ascertaining maxima/minima.
\[\begin{align}
& f{{\left( x \right)}_{\text{minimum}}}={{\left( \dfrac{1}{2} \right)}^{2}}-\left( \dfrac{1}{2} \right)+19=\left( \dfrac{75}{4} \right) \\
&\Rightarrow r\ge \sqrt{2{{\left( {{x}^{2}}-x+19 \right)}_{\text{minimum}}}} \\
&\Rightarrow r\ge \sqrt{2\times \dfrac{75}{4}} \\
&\Rightarrow r\ge \sqrt{\dfrac{25\times 3}{2}} \\
&\Rightarrow r\ge 5\sqrt{\dfrac{3}{2}} \\
\end{align}\]
Therefore, option D $r\ge 5\sqrt{\dfrac{3}{2}}$ is the correct answer.
Note: Before start solving the question, students should focus on the options given. This is one of the crucial habit for getting the idea or approach of the question. Like, in our question, options are in inequality forms then the solution will definitely involve the concept of maxima and minima (90% cases). One other major point is vector product of two vectors (cross product).
If \[\vec{a}={{a}_{1}}\vec{i}+{{a}_{2}}\vec{j}+{{a}_{3}}\vec{k}\text{ and }\vec{b}={{b}_{1}}\vec{i}-{{b}_{2}}\vec{j}+{{b}_{3}}\vec{k}\] then
\[\vec{a}\times \vec{b}=\left| \begin{matrix}
{\vec{i}} & {\vec{j}} & {\vec{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|={{x}_{1}}\vec{i}+{{x}_{2}}\vec{j}+{{x}_{3}}\vec{k}\text{ (let)}\]
Then, \[\left| \vec{a}\times \vec{b} \right|=\sqrt{{{\left( {{x}_{1}} \right)}^{2}}+{{\left( {{x}_{2}} \right)}^{2}}+{{\left( {{x}_{3}} \right)}^{2}}}\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
