
Let we have the vectors as $\vec{a}=3\vec{i}+2\vec{j}+x\vec{k}\text{ and }\vec{b}=\vec{i}-\vec{j}+\vec{k}$ for some real X. Then, $\left| \vec{a}\times \vec{b} \right|=r$ is possible if:
\[\begin{align}
& A.3\sqrt{\dfrac{3}{2}}\text{ }<\text{ }r\text{ }<\text{ }5\sqrt{\dfrac{3}{2}} \\
& B.0\text{ }<\text{ }r\text{ }<\text{ }\sqrt{\dfrac{3}{2}} \\
& C.\sqrt{\dfrac{3}{2}}\text{ }<\text{ }r\text{ }<\text{ 3}\sqrt{\dfrac{3}{2}} \\
& D.r\text{ }\ge \text{ }5\sqrt{\dfrac{3}{2}} \\
\end{align}\]
Answer
576.6k+ views
Hint: Apply cross-multiplication formula in above question and then apply minimum or maximum function rule. For finding minimum or maximum of any given function f (x) = 0, do f'(x) = 0 (i.e. the derivative of function f (x) equals to zero). Here, then we get some value of x. Now, we apply the second derivative test.
Now, once we get the minimum value then introduce the concept of inequality.
Like the given expression will be greater and equal to its minimum value. After doing some minor calculations we will get the final answer.
Complete step-by-step solution:
Now, come to the question, the given vectors are
\[\vec{a}=3\vec{i}+2\vec{j}+x\vec{k}\text{ and }\vec{b}=\vec{i}-\vec{j}+\vec{k}\]
Let us find the cross product as below,
\[\begin{align}
& \left| \vec{a}\times \vec{b} \right|=\left| \begin{matrix}
{\vec{i}} & {\vec{j}} & {\vec{k}} \\
3 & 2 & x \\
1 & -1 & 1 \\
\end{matrix} \right| \\
&\Rightarrow \left| \vec{a}\times \vec{b} \right|=\left( 2+x \right)\vec{i}+\left( x-3 \right)\vec{j}+\left( -5 \right)\vec{k} \\
\end{align}\]
Now,
\[\begin{align}
& \left| \vec{a}\times \vec{b} \right|=\sqrt{{{\left( 2+x \right)}^{2}}+{{\left( x-3 \right)}^{2}}+{{\left( -5 \right)}^{2}}} \\
&\Rightarrow r=\sqrt{{{\left( 2+x \right)}^{2}}+{{\left( x-3 \right)}^{2}}+25} \\
& \Rightarrow \sqrt{2\left( {{x}^{2}}-x+19 \right)} \\
\end{align}\]
Now, let \[f\left( x \right)={{x}^{2}}-x+19=0\]
For finding minimum or maximum of f (x) do
\[\begin{align}
&\Rightarrow f'\left( x \right)=\dfrac{d\left( f\left( x \right) \right)}{dx}=0 \\
&\Rightarrow 2x-1=0 \\
&\Rightarrow x=\dfrac{1}{2} \\
&\Rightarrow f''\left( x \right)=2\text{(+ve)} \\
\end{align}\]
Hence, $x=\dfrac{1}{2}$ for minima.
Here, we have done second derivative test:
i) If $f''\left( a \right)\text{ }>\text{ }0\Rightarrow x=a$ is a point of local minima.
ii) If $f''\left( a \right)\text{ }<\text{ }0\Rightarrow x=a$ is a point of local maxima.
In this way, we can use derivative test for ascertaining maxima/minima.
\[\begin{align}
& f{{\left( x \right)}_{\text{minimum}}}={{\left( \dfrac{1}{2} \right)}^{2}}-\left( \dfrac{1}{2} \right)+19=\left( \dfrac{75}{4} \right) \\
&\Rightarrow r\ge \sqrt{2{{\left( {{x}^{2}}-x+19 \right)}_{\text{minimum}}}} \\
&\Rightarrow r\ge \sqrt{2\times \dfrac{75}{4}} \\
&\Rightarrow r\ge \sqrt{\dfrac{25\times 3}{2}} \\
&\Rightarrow r\ge 5\sqrt{\dfrac{3}{2}} \\
\end{align}\]
Therefore, option D $r\ge 5\sqrt{\dfrac{3}{2}}$ is the correct answer.
Note: Before start solving the question, students should focus on the options given. This is one of the crucial habit for getting the idea or approach of the question. Like, in our question, options are in inequality forms then the solution will definitely involve the concept of maxima and minima (90% cases). One other major point is vector product of two vectors (cross product).
If \[\vec{a}={{a}_{1}}\vec{i}+{{a}_{2}}\vec{j}+{{a}_{3}}\vec{k}\text{ and }\vec{b}={{b}_{1}}\vec{i}-{{b}_{2}}\vec{j}+{{b}_{3}}\vec{k}\] then
\[\vec{a}\times \vec{b}=\left| \begin{matrix}
{\vec{i}} & {\vec{j}} & {\vec{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|={{x}_{1}}\vec{i}+{{x}_{2}}\vec{j}+{{x}_{3}}\vec{k}\text{ (let)}\]
Then, \[\left| \vec{a}\times \vec{b} \right|=\sqrt{{{\left( {{x}_{1}} \right)}^{2}}+{{\left( {{x}_{2}} \right)}^{2}}+{{\left( {{x}_{3}} \right)}^{2}}}\]
Now, once we get the minimum value then introduce the concept of inequality.
Like the given expression will be greater and equal to its minimum value. After doing some minor calculations we will get the final answer.
Complete step-by-step solution:
Now, come to the question, the given vectors are
\[\vec{a}=3\vec{i}+2\vec{j}+x\vec{k}\text{ and }\vec{b}=\vec{i}-\vec{j}+\vec{k}\]
Let us find the cross product as below,
\[\begin{align}
& \left| \vec{a}\times \vec{b} \right|=\left| \begin{matrix}
{\vec{i}} & {\vec{j}} & {\vec{k}} \\
3 & 2 & x \\
1 & -1 & 1 \\
\end{matrix} \right| \\
&\Rightarrow \left| \vec{a}\times \vec{b} \right|=\left( 2+x \right)\vec{i}+\left( x-3 \right)\vec{j}+\left( -5 \right)\vec{k} \\
\end{align}\]
Now,
\[\begin{align}
& \left| \vec{a}\times \vec{b} \right|=\sqrt{{{\left( 2+x \right)}^{2}}+{{\left( x-3 \right)}^{2}}+{{\left( -5 \right)}^{2}}} \\
&\Rightarrow r=\sqrt{{{\left( 2+x \right)}^{2}}+{{\left( x-3 \right)}^{2}}+25} \\
& \Rightarrow \sqrt{2\left( {{x}^{2}}-x+19 \right)} \\
\end{align}\]
Now, let \[f\left( x \right)={{x}^{2}}-x+19=0\]
For finding minimum or maximum of f (x) do
\[\begin{align}
&\Rightarrow f'\left( x \right)=\dfrac{d\left( f\left( x \right) \right)}{dx}=0 \\
&\Rightarrow 2x-1=0 \\
&\Rightarrow x=\dfrac{1}{2} \\
&\Rightarrow f''\left( x \right)=2\text{(+ve)} \\
\end{align}\]
Hence, $x=\dfrac{1}{2}$ for minima.
Here, we have done second derivative test:
i) If $f''\left( a \right)\text{ }>\text{ }0\Rightarrow x=a$ is a point of local minima.
ii) If $f''\left( a \right)\text{ }<\text{ }0\Rightarrow x=a$ is a point of local maxima.
In this way, we can use derivative test for ascertaining maxima/minima.
\[\begin{align}
& f{{\left( x \right)}_{\text{minimum}}}={{\left( \dfrac{1}{2} \right)}^{2}}-\left( \dfrac{1}{2} \right)+19=\left( \dfrac{75}{4} \right) \\
&\Rightarrow r\ge \sqrt{2{{\left( {{x}^{2}}-x+19 \right)}_{\text{minimum}}}} \\
&\Rightarrow r\ge \sqrt{2\times \dfrac{75}{4}} \\
&\Rightarrow r\ge \sqrt{\dfrac{25\times 3}{2}} \\
&\Rightarrow r\ge 5\sqrt{\dfrac{3}{2}} \\
\end{align}\]
Therefore, option D $r\ge 5\sqrt{\dfrac{3}{2}}$ is the correct answer.
Note: Before start solving the question, students should focus on the options given. This is one of the crucial habit for getting the idea or approach of the question. Like, in our question, options are in inequality forms then the solution will definitely involve the concept of maxima and minima (90% cases). One other major point is vector product of two vectors (cross product).
If \[\vec{a}={{a}_{1}}\vec{i}+{{a}_{2}}\vec{j}+{{a}_{3}}\vec{k}\text{ and }\vec{b}={{b}_{1}}\vec{i}-{{b}_{2}}\vec{j}+{{b}_{3}}\vec{k}\] then
\[\vec{a}\times \vec{b}=\left| \begin{matrix}
{\vec{i}} & {\vec{j}} & {\vec{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|={{x}_{1}}\vec{i}+{{x}_{2}}\vec{j}+{{x}_{3}}\vec{k}\text{ (let)}\]
Then, \[\left| \vec{a}\times \vec{b} \right|=\sqrt{{{\left( {{x}_{1}} \right)}^{2}}+{{\left( {{x}_{2}} \right)}^{2}}+{{\left( {{x}_{3}} \right)}^{2}}}\]
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

