
Let we are given the matrices as $X=\left[ \begin{matrix}
{{x}_{1}} \\
{{x}_{2}} \\
{{x}_{3}} \\
\end{matrix} \right]$, $A=\left[ \begin{matrix}
1 & -1 & 2 \\
2 & 0 & 1 \\
3 & 2 & 1 \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
3 \\
1 \\
4 \\
\end{matrix} \right]$. If $AX=B$ then $X$ is equal to \[\]
A. $\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]$\[\]
B. $\left[ \begin{matrix}
-1 \\
-2 \\
-3 \\
\end{matrix} \right]$\[\]
C. $\left[ \begin{matrix}
-1 \\
2 \\
3 \\
\end{matrix} \right]$\[\]
D. $\left[ \begin{matrix}
0 \\
2 \\
1 \\
\end{matrix} \right]$\[\]
Answer
575.7k+ views
Hint: We multiply ${{A}^{-1}}$ at both sides of the given equation on the left and get $X={{A}^{-1}}B$. We find the inverse matrix ${{A}^{-1}}=\dfrac{\text{adj}\text{.}A}{\det \left( A \right)}$ where $\text{adj}\text{.}A$ is the adjoint matrix and $\det \left( A \right)$ is the determinant value of $A$. We find the adjoint by taking the transpose of the cofactor matrix of $A$ which means $ text{adj}.A={{\left( \text{cof}.A \right)}^{T}}$ , the determinant value and then ${{A}^{-1}}$. We multiply ${{A}^{-1}}B$ to get $X$.
Complete step-by-step solution:
We are given in the question a column vector $X$ of order $3\times 1$ with three unknowns${{x}_{1}},{{x}_{2}},{{x}_{3}}$, a square matrix $A$ of order $3\times 3$ with integers as entries and a column vector $B$of order $3\times 1$ with integer as entries. We have
\[X=\left[ \begin{matrix}
{{x}_{1}} \\
{{x}_{2}} \\
{{x}_{3}} \\
\end{matrix} \right],A=\left[ \begin{matrix}
1 & -1 & 2 \\
2 & 0 & 1 \\
3 & 2 & 1 \\
\end{matrix} \right],B=\left[ \begin{matrix}
3 \\
1 \\
4 \\
\end{matrix} \right]\]
We are also given an equation of matrices
\[AX=B\]
Let us multiply the inverse of the matrix $A$ that is ${{A}^{-1}}$ on both sides of the equation from the left. We have,
\[\Rightarrow {{A}^{-1}}\left( AX \right)={{A}^{-1}}B\]
We know that matrix multiplication is associative. So we have
\[\begin{align}
& \Rightarrow \left( {{A}^{-1}}A \right)X={{A}^{-1}}B \\
& \Rightarrow IX={{A}^{-1}}B \\
& \Rightarrow X={{A}^{-1}}B......\left( 1 \right) \\
\end{align}\]
Here “I” is the identity matrix of order $3\times 3$. So we have to find ${{A}^{-1}}$. We know that
\[{{A}^{-1}}=\dfrac{1}{\det \left( A \right)}\text{adj}A\]
Here $\text{adj}A$ is the adjoint matrix of A and $\det \left( A \right)$ is the determinant value of $A$, Let us find the determinant value first by expanding by first row. We have,
\[\det \left( A \right)=\left| \begin{matrix}
1 & -1 & 2 \\
2 & 0 & 1 \\
3 & 2 & 1 \\
\end{matrix} \right|=1\left( 0-2 \right)-\left( -1 \right)\left( 2-3 \right)+2\left( 4-0 \right)=5\]
We know that the adjoint matrix of $A$ is the transpose of cofactor matrix of which means
\[\text{adj}A={{\left( \text{cof}A \right)}^{T}}\]
We know that the cofactor matrix is made up of entries as the cofactors of each element from the original matrix. The cofactor of the entry ${{a}_{ij}}$ (where $i$ is row position and $j$ is the column position) is equal to the determinant value of the square matrix (order 1 less than original matrix) t formed by rows and columns excluding the ${{i}^{\text{th}}}$row and ${{j}^{\text{th}}}$column and then multiplied by ${{\left( -1 \right)}^{i+j}}$. The co-factors of the entries in first row are
\[\begin{align}
& C\left( 1 \right)={{\left( -1 \right)}^{1+1}}\left| \begin{matrix}
0 & 1 \\
2 & 1 \\
\end{matrix} \right|=1\left( 0-2 \right)=-2 \\
& C\left( -1 \right)={{\left( -1 \right)}^{1+2}}\left| \begin{matrix}
2 & 1 \\
3 & 1 \\
\end{matrix} \right|=-1\left( 2-3 \right)=1 \\
& C\left( 2 \right)={{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
2 & 0 \\
3 & 2 \\
\end{matrix} \right|=1\left( 4-0 \right)=4 \\
\end{align}\]
The cofactors of the elements in the second row are
\[\begin{align}
& C\left( 2 \right)={{\left( -1 \right)}^{2+1}}\left| \begin{matrix}
-1 & 2 \\
2 & 1 \\
\end{matrix} \right|=-1\left( -1-4 \right)=5 \\
& C\left( 0 \right)={{\left( -1 \right)}^{2+2}}\left| \begin{matrix}
1 & 2 \\
3 & 1 \\
\end{matrix} \right|=1\left( 1-6 \right)=-5 \\
& C\left( 1 \right)={{\left( -1 \right)}^{2+3}}\left| \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right|=-1\left( 2-\left( -3 \right) \right)=-5 \\
\end{align}\]
The cofactors of the elements in the third row are
\[\begin{align}
& C\left( 3 \right)={{\left( -1 \right)}^{3+1}}\left| \begin{matrix}
-1 & 2 \\
0 & 1 \\
\end{matrix} \right|=1\left( -1-0 \right)=-1 \\
& C\left( 2 \right)={{\left( -1 \right)}^{3+2}}\left| \begin{matrix}
1 & 2 \\
2 & 1 \\
\end{matrix} \right|=-1\left( 1-4 \right)=3 \\
& C\left( 1 \right)={{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
1 & -1 \\
2 & 0 \\
\end{matrix} \right|=1\left( 0-\left( -2 \right) \right)=2 \\
\end{align}\]
So the co-factor matrix $A$ is,
\[\text{cof}\text{.}A=\left[ \begin{matrix}
C\left( 1 \right) & C\left( -1 \right) & C\left( 2 \right) \\
C\left( 2 \right) & C\left( 0 \right) & C\left( 1 \right) \\
C\left( 3 \right) & C\left( 2 \right) & C\left( 1 \right) \\
\end{matrix} \right]=\left[ \begin{matrix}
-2 & 1 & 4 \\
5 & -5 & 5 \\
-1 & 3 & 2 \\
\end{matrix} \right]\]
Let us take the transpose of the cofactor matrix of $A$ by writing rows as column to get adjoint matrix of $A$ We have
\[\text{adj}\text{.}A={{\left( \text{cof}\text{.}A \right)}^{T}}={{\left[ \begin{matrix}
-2 & 1 & 4 \\
5 & -5 & -5 \\
-1 & 3 & 2 \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
-2 & 5 & -1 \\
1 & -5 & 3 \\
4 & -5 & 2 \\
\end{matrix} \right]\]
So the inverse of matrix of $A$ is,
\[{{A}^{-1}}=\dfrac{adj.A}{\det \left( A \right)}=\dfrac{\left[ \begin{matrix}
-2 & 5 & -1 \\
1 & -5 & 3 \\
4 & -5 & 2 \\
\end{matrix} \right]}{5}=\left[ \begin{matrix}
\dfrac{-2}{5} & 1 & \dfrac{-1}{5} \\
\dfrac{1}{5} & -1 & \dfrac{3}{5} \\
\dfrac{4}{5} & -1 & \dfrac{2}{5} \\
\end{matrix} \right]\]
We put ${{A}^{-1}}$ and $B$ in equation (1) and find the unknown vector $X$ as,
\[X={{A}^{-1}}B=\left[ \begin{matrix}
\dfrac{-2}{5} & 1 & \dfrac{-1}{5} \\
\dfrac{1}{5} & -1 & \dfrac{3}{5} \\
\dfrac{4}{5} & -1 & \dfrac{2}{5} \\
\end{matrix} \right]\times \left[ \begin{matrix}
3 \\
1 \\
4 \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 \\
2 \\
3 \\
\end{matrix} \right]\]
So the correct choice is C.\[\]
Note: We note that we could multiply ${{A}^{-1}}$ from the left only not from the right as multiplication in matrix is not commutative but ${{A}^{-1}}A=A{{A}^{-1}}=I$. We can alternatively find the inverse by using Gauss-Jordan elimination of the augmented matrix$\left( A, B \right)$. The matrix equation $AX=B$ is a system of equations which here in this problem has a unique solution. . We note that we cannot find an inverse if when$\det \left( A \right)=0$.
Complete step-by-step solution:
We are given in the question a column vector $X$ of order $3\times 1$ with three unknowns${{x}_{1}},{{x}_{2}},{{x}_{3}}$, a square matrix $A$ of order $3\times 3$ with integers as entries and a column vector $B$of order $3\times 1$ with integer as entries. We have
\[X=\left[ \begin{matrix}
{{x}_{1}} \\
{{x}_{2}} \\
{{x}_{3}} \\
\end{matrix} \right],A=\left[ \begin{matrix}
1 & -1 & 2 \\
2 & 0 & 1 \\
3 & 2 & 1 \\
\end{matrix} \right],B=\left[ \begin{matrix}
3 \\
1 \\
4 \\
\end{matrix} \right]\]
We are also given an equation of matrices
\[AX=B\]
Let us multiply the inverse of the matrix $A$ that is ${{A}^{-1}}$ on both sides of the equation from the left. We have,
\[\Rightarrow {{A}^{-1}}\left( AX \right)={{A}^{-1}}B\]
We know that matrix multiplication is associative. So we have
\[\begin{align}
& \Rightarrow \left( {{A}^{-1}}A \right)X={{A}^{-1}}B \\
& \Rightarrow IX={{A}^{-1}}B \\
& \Rightarrow X={{A}^{-1}}B......\left( 1 \right) \\
\end{align}\]
Here “I” is the identity matrix of order $3\times 3$. So we have to find ${{A}^{-1}}$. We know that
\[{{A}^{-1}}=\dfrac{1}{\det \left( A \right)}\text{adj}A\]
Here $\text{adj}A$ is the adjoint matrix of A and $\det \left( A \right)$ is the determinant value of $A$, Let us find the determinant value first by expanding by first row. We have,
\[\det \left( A \right)=\left| \begin{matrix}
1 & -1 & 2 \\
2 & 0 & 1 \\
3 & 2 & 1 \\
\end{matrix} \right|=1\left( 0-2 \right)-\left( -1 \right)\left( 2-3 \right)+2\left( 4-0 \right)=5\]
We know that the adjoint matrix of $A$ is the transpose of cofactor matrix of which means
\[\text{adj}A={{\left( \text{cof}A \right)}^{T}}\]
We know that the cofactor matrix is made up of entries as the cofactors of each element from the original matrix. The cofactor of the entry ${{a}_{ij}}$ (where $i$ is row position and $j$ is the column position) is equal to the determinant value of the square matrix (order 1 less than original matrix) t formed by rows and columns excluding the ${{i}^{\text{th}}}$row and ${{j}^{\text{th}}}$column and then multiplied by ${{\left( -1 \right)}^{i+j}}$. The co-factors of the entries in first row are
\[\begin{align}
& C\left( 1 \right)={{\left( -1 \right)}^{1+1}}\left| \begin{matrix}
0 & 1 \\
2 & 1 \\
\end{matrix} \right|=1\left( 0-2 \right)=-2 \\
& C\left( -1 \right)={{\left( -1 \right)}^{1+2}}\left| \begin{matrix}
2 & 1 \\
3 & 1 \\
\end{matrix} \right|=-1\left( 2-3 \right)=1 \\
& C\left( 2 \right)={{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
2 & 0 \\
3 & 2 \\
\end{matrix} \right|=1\left( 4-0 \right)=4 \\
\end{align}\]
The cofactors of the elements in the second row are
\[\begin{align}
& C\left( 2 \right)={{\left( -1 \right)}^{2+1}}\left| \begin{matrix}
-1 & 2 \\
2 & 1 \\
\end{matrix} \right|=-1\left( -1-4 \right)=5 \\
& C\left( 0 \right)={{\left( -1 \right)}^{2+2}}\left| \begin{matrix}
1 & 2 \\
3 & 1 \\
\end{matrix} \right|=1\left( 1-6 \right)=-5 \\
& C\left( 1 \right)={{\left( -1 \right)}^{2+3}}\left| \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right|=-1\left( 2-\left( -3 \right) \right)=-5 \\
\end{align}\]
The cofactors of the elements in the third row are
\[\begin{align}
& C\left( 3 \right)={{\left( -1 \right)}^{3+1}}\left| \begin{matrix}
-1 & 2 \\
0 & 1 \\
\end{matrix} \right|=1\left( -1-0 \right)=-1 \\
& C\left( 2 \right)={{\left( -1 \right)}^{3+2}}\left| \begin{matrix}
1 & 2 \\
2 & 1 \\
\end{matrix} \right|=-1\left( 1-4 \right)=3 \\
& C\left( 1 \right)={{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
1 & -1 \\
2 & 0 \\
\end{matrix} \right|=1\left( 0-\left( -2 \right) \right)=2 \\
\end{align}\]
So the co-factor matrix $A$ is,
\[\text{cof}\text{.}A=\left[ \begin{matrix}
C\left( 1 \right) & C\left( -1 \right) & C\left( 2 \right) \\
C\left( 2 \right) & C\left( 0 \right) & C\left( 1 \right) \\
C\left( 3 \right) & C\left( 2 \right) & C\left( 1 \right) \\
\end{matrix} \right]=\left[ \begin{matrix}
-2 & 1 & 4 \\
5 & -5 & 5 \\
-1 & 3 & 2 \\
\end{matrix} \right]\]
Let us take the transpose of the cofactor matrix of $A$ by writing rows as column to get adjoint matrix of $A$ We have
\[\text{adj}\text{.}A={{\left( \text{cof}\text{.}A \right)}^{T}}={{\left[ \begin{matrix}
-2 & 1 & 4 \\
5 & -5 & -5 \\
-1 & 3 & 2 \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
-2 & 5 & -1 \\
1 & -5 & 3 \\
4 & -5 & 2 \\
\end{matrix} \right]\]
So the inverse of matrix of $A$ is,
\[{{A}^{-1}}=\dfrac{adj.A}{\det \left( A \right)}=\dfrac{\left[ \begin{matrix}
-2 & 5 & -1 \\
1 & -5 & 3 \\
4 & -5 & 2 \\
\end{matrix} \right]}{5}=\left[ \begin{matrix}
\dfrac{-2}{5} & 1 & \dfrac{-1}{5} \\
\dfrac{1}{5} & -1 & \dfrac{3}{5} \\
\dfrac{4}{5} & -1 & \dfrac{2}{5} \\
\end{matrix} \right]\]
We put ${{A}^{-1}}$ and $B$ in equation (1) and find the unknown vector $X$ as,
\[X={{A}^{-1}}B=\left[ \begin{matrix}
\dfrac{-2}{5} & 1 & \dfrac{-1}{5} \\
\dfrac{1}{5} & -1 & \dfrac{3}{5} \\
\dfrac{4}{5} & -1 & \dfrac{2}{5} \\
\end{matrix} \right]\times \left[ \begin{matrix}
3 \\
1 \\
4 \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 \\
2 \\
3 \\
\end{matrix} \right]\]
So the correct choice is C.\[\]
Note: We note that we could multiply ${{A}^{-1}}$ from the left only not from the right as multiplication in matrix is not commutative but ${{A}^{-1}}A=A{{A}^{-1}}=I$. We can alternatively find the inverse by using Gauss-Jordan elimination of the augmented matrix$\left( A, B \right)$. The matrix equation $AX=B$ is a system of equations which here in this problem has a unique solution. . We note that we cannot find an inverse if when$\det \left( A \right)=0$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

