
Let w (Im w \[ \ne 0\]) be a complex number. Then the set of all complex number z satisfying the equation $w - \bar wz = k\left( {1 - z} \right)$ , for some real number k, is:
A) $\left\{ {z:\left| z \right| = 1} \right\}$
B) $\left\{ {z:z = \bar z} \right\}$
C) $\left\{ {z:z \ne 1} \right\}$
D) $\left\{ {z:\left| z \right| = 1,z \ne 1} \right\}$
Answer
574.5k+ views
Hint: A number of the form $\left( {a + ib} \right)$ , where $a{\text{ and }}b$ are real numbers, is called a complex number, $a$ is called the real part, and $b$ called the imaginary part.
Here, $i$ is called iota and equals $\sqrt { - 1} $ .
Imaginary value (or part) (or number) is the value that combines with iota, $i$.
The conjugate of the complex number $z = a + ib$ , denoted by $\bar z$ , is given by $\bar z = a - ib$.
In complex equations, generally $z = x + iy$ is a complex variable.
Roots of a complex equation in a variable $z$, is the value of $z$ which satisfies the complex equation.
Complete step-by-step answer:
Step 1: Substitute complex numbers in the given equation.
Let complex number, $w = a + ib$, provided $b \ne 0$
Thus, its conjugate, $\bar w = a - ib$
$
w - \bar w = a + ib - \left( {a - ib} \right) \\
\Rightarrow w - \bar w = a + ib - a + ib = 2ib \\
$
But given that $b \ne 0$
$\therefore w - \bar w \ne 0$ …… (1)
We know, $z = x + iy$
Given the complex equation: $w - \bar wz = k\left( {1 - z} \right)$
Here, k is a real number.
Substituting the values of $w,\bar w,z$ in given equation.
\[a + ib - \left[ {\left( {a - ib} \right)\left( {x + iy} \right)} \right] = k\left( {1 - \left( {x + iy} \right)} \right)\]
Step 2: Further simplifying the equation:
\[ \Rightarrow a + ib - \left[ {ax + iay - ibx - {i^2}by} \right] = k\left( {1 - x - iy} \right)\]
We know, $i = \sqrt 1 $
Therefore, put ${i^2} = - 1$
\[
\Rightarrow a + ib - \left[ {ax + iay - ibx + by} \right] = k\left( {1 - x - iy} \right) \\
\Rightarrow a + ib - ax - iay + ibx - by = k - kx - iky \\
\]
Combining imaginary terms and real terms:
\[ \Rightarrow a - ax - by + i\left( {b - ay + bx} \right) = \left( {k - kx} \right) - iky\]
When two complex numbers are equal, their respective real parts and imaginary parts are equal. For example:
$
s + it = 2 + i(x - 3) \\
\Rightarrow s = 2;t = \left( {x - 3} \right) \\
$
Therefore, \[a - ax - by = k - kx\]
\[
\Rightarrow a - ax - by = k\left( {1 - x} \right) \\
\Rightarrow k = \dfrac{{a - ax - by}}{{\left( {1 - x} \right)}} \\
\] …… (2)
And \[b - ay + bx = - ky\]
\[ \Rightarrow k = \dfrac{{b - ay + bx}}{{ - y}}\] …… (3)
From equation (3) and (4)
\[ \Rightarrow \dfrac{{a - ax - by}}{{\left( {1 - x} \right)}} = \dfrac{{b - ay + bx}}{{ - y}}\]
\[
\Rightarrow - y\left( {a - ax - by} \right) = \left( {1 - x} \right)\left( {b - ay + bx} \right) \\
\Rightarrow - ay + axy + b{y^2} = b - bx - ay + axy + bx - b{x^2} \\
\Rightarrow {\text{ }}b{y^2} = b - b{x^2} \\
\Rightarrow {\text{ }}b{y^2} + b{x^2} = b \\
\Rightarrow {\text{ }}{x^2} + {y^2} = 1 \\
\]
Taking square root on both sides
\[ \Rightarrow {\text{square root on both sides}}\sqrt {{x^2} + {y^2}} = \sqrt 1 = 1\] ...... (4)
The modulus of the complex number $z = x + iy$ , is equal to the square root of the sum of squares of the real part and imaginary part, denoted by $\left| z \right|$ , i.e.,
$\left| z \right| = \sqrt {{x^2} + {y^2}} $
From equation (4)
$\left| z \right| = \sqrt {{x^2} + {y^2}} = 1$
For $z = 1$ , in the given equation
$w - \bar wz = k\left( {1 - z} \right)$
$
\Rightarrow w - \bar w\left( 1 \right) = k\left( {1 - 1} \right) \\
\Rightarrow w - \bar w = 0 \\
$
But this contradicts with the equation (1) i.e. $w - \bar w \ne 0$
Hence, $z \ne 1$
Final answer: Then the set of all complex number z satisfying the equation is $\left| z \right| = 1$ but $z \ne 1$ . Thus, the correct option is (D).
Graphical representation
Note: Square of Modulus of a complex number is equal to the product of the number and its conjugate.
i.e. ${\left| z \right|^2} = z \cdot \bar z$
Alternate steps for simplifying the given complex equation:
$
w - \bar wz = k\left( {1 - z} \right) \\
\Rightarrow w - \bar wz = k - kz \\
\Rightarrow w - k = - kz + \bar wz \\
\Rightarrow w - k = z\left( {\bar w - k} \right) \\
$
Taking modulus and then squaring both sides.
\[ \Rightarrow {\left| {w - k} \right|^2} = {\left| {z\left( {\bar w - k} \right)} \right|^2}\]
We know, ${\left| z \right|^2} = z \cdot \bar z$
\[ \Rightarrow \left( {w - k} \right)\left( {\overline {w - k} } \right) = {\left| z \right|^2}\left( {\bar w - k} \right)\left( {\overline {\bar w - k} } \right)\]
Given that k is a real number, therefore conjugate of k = k.
\[ \Rightarrow \left( {w - k} \right)\left( {\bar w - k} \right) = {\left| z \right|^2}\left( {\bar w - k} \right)\left( {w - k} \right)\]
\[
\Rightarrow \left( {w - k} \right)\left( {\bar w - k} \right) - {\left| z \right|^2}\left( {\bar w - k} \right)\left( {w - k} \right) = 0 \\
\Rightarrow \left[ {\left( {w - k} \right)\left( {\bar w - k} \right)} \right]\left( {1 - {{\left| z \right|}^2}} \right) = 0 \\
\]
\[
\left( {1 - {{\left| z \right|}^2}} \right) = 0 \\
\Rightarrow {\left| z \right|^2} = 1 \\
\Rightarrow \left| z \right| = 1 \\
\]
\[
\left[ {\left( {w - k} \right)\left( {\bar w - k} \right)} \right] = 0 \\
\Rightarrow \left( {w - k} \right)\left( {\overline {w - k} } \right) = 0 \\
\Rightarrow {\left| {w - k} \right|^2} = 0 \\
\Rightarrow w - k = 0 \\
\Rightarrow w = k \\
\]
But k is a real number, so w would also be a real number. But it contradicts that the w is a complex number. That’s why $w \ne k$
Form the above solution we have, $z \ne 1$. Hence, the correct option is (D).
Here, $i$ is called iota and equals $\sqrt { - 1} $ .
Imaginary value (or part) (or number) is the value that combines with iota, $i$.
The conjugate of the complex number $z = a + ib$ , denoted by $\bar z$ , is given by $\bar z = a - ib$.
In complex equations, generally $z = x + iy$ is a complex variable.
Roots of a complex equation in a variable $z$, is the value of $z$ which satisfies the complex equation.
Complete step-by-step answer:
Step 1: Substitute complex numbers in the given equation.
Let complex number, $w = a + ib$, provided $b \ne 0$
Thus, its conjugate, $\bar w = a - ib$
$
w - \bar w = a + ib - \left( {a - ib} \right) \\
\Rightarrow w - \bar w = a + ib - a + ib = 2ib \\
$
But given that $b \ne 0$
$\therefore w - \bar w \ne 0$ …… (1)
We know, $z = x + iy$
Given the complex equation: $w - \bar wz = k\left( {1 - z} \right)$
Here, k is a real number.
Substituting the values of $w,\bar w,z$ in given equation.
\[a + ib - \left[ {\left( {a - ib} \right)\left( {x + iy} \right)} \right] = k\left( {1 - \left( {x + iy} \right)} \right)\]
Step 2: Further simplifying the equation:
\[ \Rightarrow a + ib - \left[ {ax + iay - ibx - {i^2}by} \right] = k\left( {1 - x - iy} \right)\]
We know, $i = \sqrt 1 $
Therefore, put ${i^2} = - 1$
\[
\Rightarrow a + ib - \left[ {ax + iay - ibx + by} \right] = k\left( {1 - x - iy} \right) \\
\Rightarrow a + ib - ax - iay + ibx - by = k - kx - iky \\
\]
Combining imaginary terms and real terms:
\[ \Rightarrow a - ax - by + i\left( {b - ay + bx} \right) = \left( {k - kx} \right) - iky\]
When two complex numbers are equal, their respective real parts and imaginary parts are equal. For example:
$
s + it = 2 + i(x - 3) \\
\Rightarrow s = 2;t = \left( {x - 3} \right) \\
$
Therefore, \[a - ax - by = k - kx\]
\[
\Rightarrow a - ax - by = k\left( {1 - x} \right) \\
\Rightarrow k = \dfrac{{a - ax - by}}{{\left( {1 - x} \right)}} \\
\] …… (2)
And \[b - ay + bx = - ky\]
\[ \Rightarrow k = \dfrac{{b - ay + bx}}{{ - y}}\] …… (3)
From equation (3) and (4)
\[ \Rightarrow \dfrac{{a - ax - by}}{{\left( {1 - x} \right)}} = \dfrac{{b - ay + bx}}{{ - y}}\]
\[
\Rightarrow - y\left( {a - ax - by} \right) = \left( {1 - x} \right)\left( {b - ay + bx} \right) \\
\Rightarrow - ay + axy + b{y^2} = b - bx - ay + axy + bx - b{x^2} \\
\Rightarrow {\text{ }}b{y^2} = b - b{x^2} \\
\Rightarrow {\text{ }}b{y^2} + b{x^2} = b \\
\Rightarrow {\text{ }}{x^2} + {y^2} = 1 \\
\]
Taking square root on both sides
\[ \Rightarrow {\text{square root on both sides}}\sqrt {{x^2} + {y^2}} = \sqrt 1 = 1\] ...... (4)
The modulus of the complex number $z = x + iy$ , is equal to the square root of the sum of squares of the real part and imaginary part, denoted by $\left| z \right|$ , i.e.,
$\left| z \right| = \sqrt {{x^2} + {y^2}} $
From equation (4)
$\left| z \right| = \sqrt {{x^2} + {y^2}} = 1$
For $z = 1$ , in the given equation
$w - \bar wz = k\left( {1 - z} \right)$
$
\Rightarrow w - \bar w\left( 1 \right) = k\left( {1 - 1} \right) \\
\Rightarrow w - \bar w = 0 \\
$
But this contradicts with the equation (1) i.e. $w - \bar w \ne 0$
Hence, $z \ne 1$
Final answer: Then the set of all complex number z satisfying the equation is $\left| z \right| = 1$ but $z \ne 1$ . Thus, the correct option is (D).
Graphical representation
Note: Square of Modulus of a complex number is equal to the product of the number and its conjugate.
i.e. ${\left| z \right|^2} = z \cdot \bar z$
Alternate steps for simplifying the given complex equation:
$
w - \bar wz = k\left( {1 - z} \right) \\
\Rightarrow w - \bar wz = k - kz \\
\Rightarrow w - k = - kz + \bar wz \\
\Rightarrow w - k = z\left( {\bar w - k} \right) \\
$
Taking modulus and then squaring both sides.
\[ \Rightarrow {\left| {w - k} \right|^2} = {\left| {z\left( {\bar w - k} \right)} \right|^2}\]
We know, ${\left| z \right|^2} = z \cdot \bar z$
\[ \Rightarrow \left( {w - k} \right)\left( {\overline {w - k} } \right) = {\left| z \right|^2}\left( {\bar w - k} \right)\left( {\overline {\bar w - k} } \right)\]
Given that k is a real number, therefore conjugate of k = k.
\[ \Rightarrow \left( {w - k} \right)\left( {\bar w - k} \right) = {\left| z \right|^2}\left( {\bar w - k} \right)\left( {w - k} \right)\]
\[
\Rightarrow \left( {w - k} \right)\left( {\bar w - k} \right) - {\left| z \right|^2}\left( {\bar w - k} \right)\left( {w - k} \right) = 0 \\
\Rightarrow \left[ {\left( {w - k} \right)\left( {\bar w - k} \right)} \right]\left( {1 - {{\left| z \right|}^2}} \right) = 0 \\
\]
\[
\left( {1 - {{\left| z \right|}^2}} \right) = 0 \\
\Rightarrow {\left| z \right|^2} = 1 \\
\Rightarrow \left| z \right| = 1 \\
\]
\[
\left[ {\left( {w - k} \right)\left( {\bar w - k} \right)} \right] = 0 \\
\Rightarrow \left( {w - k} \right)\left( {\overline {w - k} } \right) = 0 \\
\Rightarrow {\left| {w - k} \right|^2} = 0 \\
\Rightarrow w - k = 0 \\
\Rightarrow w = k \\
\]
But k is a real number, so w would also be a real number. But it contradicts that the w is a complex number. That’s why $w \ne k$
Form the above solution we have, $z \ne 1$. Hence, the correct option is (D).
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

