
Let $\vec{a}=2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k}$, $\vec{b}=4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}$ and $\vec{c}=3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k}$ be three vectors such that $\vec{b}=2\vec{a}$ and $\vec{a}$ is perpendicular to $\vec{c}$, then find the possible value of $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)$?
(a) $\left( \dfrac{1}{2},4,-2 \right)$,
(b) $\left( -\dfrac{1}{2},4,0 \right)$,
(c) $\left( 1,3,1 \right)$,
(d) $\left( 1,5,1 \right)$.
Answer
591k+ views
Hint: We start solving the problem by using the given condition $\vec{b}=2\vec{a}$ to get the relation between ${{\lambda }_{1}}$ and ${{\lambda }_{2}}$. We use the fact that the dot product of product of two perpendicular vectors is zero for the vectors $\vec{a}$ and $\vec{c}$ to get the relation between the ${{\lambda }_{1}}$ and ${{\lambda }_{3}}$. We assume the values for ${{\lambda }_{1}}$ as per the requirement of the problem to get the desired result.
Complete step-by-step answer:
According to the problem, we have three vectors given as $\vec{a}=2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k}$, $\vec{b}=4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}$ and $\vec{c}=3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k}$. It is also said that $\vec{b}=2\vec{a}$ and $\vec{a}$ is perpendicular to $\vec{c}$. We need to find the possible value of $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)$.
Let us use our first condition $\vec{b}=2\vec{a}$.
$\Rightarrow 4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}=2\times \left( 2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k} \right)$.
$\Rightarrow 4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}=4\hat{i}+2{{\lambda }_{1}}\hat{j}+6\hat{k}$.
We compare the coefficients of $\hat{j}$ on both sides.
$\Rightarrow 3-{{\lambda }_{2}}=2{{\lambda }_{1}}$
$\Rightarrow {{\lambda }_{2}}=3-2{{\lambda }_{1}}$ ---(1).
We have our second condition as $\vec{a}$ is perpendicular to $\vec{c}$. We know that the dot product of two perpendicular vectors is zero.
So, we have $\vec{a}\bullet \vec{c}=0$.
$\Rightarrow \left( 2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k} \right)\bullet \left( 3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k} \right)=0$.
We know that dot product of two vectors $a\hat{i}+b\hat{j}+c\hat{k}$ and $d\hat{i}+e\hat{j}+f\hat{k}$ is defined as \[\left( a\hat{i}+b\hat{j}+c\hat{k} \right)\bullet \left( d\hat{i}+e\hat{j}+f\hat{k} \right)=ad+be+cf\].
$\Rightarrow \left( 2\times 3 \right)+\left( {{\lambda }_{1}}\times 6 \right)+\left( 3\times \left( {{\lambda }_{3}}-1 \right) \right)=0$.
\[\Rightarrow 6+6{{\lambda }_{1}}+3{{\lambda }_{3}}-3=0\].
\[\Rightarrow 6{{\lambda }_{1}}+3{{\lambda }_{3}}+3=0\].
\[\Rightarrow 2{{\lambda }_{1}}+{{\lambda }_{3}}+1=0\].
\[\Rightarrow {{\lambda }_{3}}=-2{{\lambda }_{1}}-1\] ---(2).
From equations (1) and (2), we got $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( {{\lambda }_{1}},3-2{{\lambda }_{1}},-2{{\lambda }_{1}}-1 \right)$ ---(3).
Let us assume the value of ${{\lambda }_{1}}$ as $\dfrac{1}{2}$. We substitute in equation (3).
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},3-2\left( \dfrac{1}{2} \right),-2\left( \dfrac{1}{2} \right)-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},3-1,-1-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},2,-2 \right)$ ---(4).
Let us assume the value of ${{\lambda }_{1}}$ as $\dfrac{-1}{2}$. We substitute in equation (3).
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},3-2\left( \dfrac{-1}{2} \right),-2\left( \dfrac{-1}{2} \right)-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},3+1,+1-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},4,0 \right)$ ---(5).
Let us assume the value of ${{\lambda }_{1}}$ as 1. We substitute in equation (3).
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,3-2\left( 1 \right),-2\left( 1 \right)-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,3-2,-2-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,1,-3 \right)$ ---(6).
From equations (4), (5) and (6), we can see there is only one option matching our answer i.e., $\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},4,0 \right)$.
We have found one of the possible values of $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)$ as $\left( \dfrac{-1}{2},4,0 \right)$.
So, the correct answer is “Option b”.
Note: We can get other condition as the vector $\vec{b}$ is perpendicular to $\vec{c}$ as vector $\vec{b}$ is parallel to the vector $\vec{a}$. This condition also leads to the same condition as equation (1) which makes our problem not solvable for a single solution. Since we have only two equations for solving three variables, we could not get a single definite solution. Instead, we get infinite no. of solutions for the given problem.
Complete step-by-step answer:
According to the problem, we have three vectors given as $\vec{a}=2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k}$, $\vec{b}=4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}$ and $\vec{c}=3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k}$. It is also said that $\vec{b}=2\vec{a}$ and $\vec{a}$ is perpendicular to $\vec{c}$. We need to find the possible value of $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)$.
Let us use our first condition $\vec{b}=2\vec{a}$.
$\Rightarrow 4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}=2\times \left( 2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k} \right)$.
$\Rightarrow 4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}=4\hat{i}+2{{\lambda }_{1}}\hat{j}+6\hat{k}$.
We compare the coefficients of $\hat{j}$ on both sides.
$\Rightarrow 3-{{\lambda }_{2}}=2{{\lambda }_{1}}$
$\Rightarrow {{\lambda }_{2}}=3-2{{\lambda }_{1}}$ ---(1).
We have our second condition as $\vec{a}$ is perpendicular to $\vec{c}$. We know that the dot product of two perpendicular vectors is zero.
So, we have $\vec{a}\bullet \vec{c}=0$.
$\Rightarrow \left( 2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k} \right)\bullet \left( 3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k} \right)=0$.
We know that dot product of two vectors $a\hat{i}+b\hat{j}+c\hat{k}$ and $d\hat{i}+e\hat{j}+f\hat{k}$ is defined as \[\left( a\hat{i}+b\hat{j}+c\hat{k} \right)\bullet \left( d\hat{i}+e\hat{j}+f\hat{k} \right)=ad+be+cf\].
$\Rightarrow \left( 2\times 3 \right)+\left( {{\lambda }_{1}}\times 6 \right)+\left( 3\times \left( {{\lambda }_{3}}-1 \right) \right)=0$.
\[\Rightarrow 6+6{{\lambda }_{1}}+3{{\lambda }_{3}}-3=0\].
\[\Rightarrow 6{{\lambda }_{1}}+3{{\lambda }_{3}}+3=0\].
\[\Rightarrow 2{{\lambda }_{1}}+{{\lambda }_{3}}+1=0\].
\[\Rightarrow {{\lambda }_{3}}=-2{{\lambda }_{1}}-1\] ---(2).
From equations (1) and (2), we got $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( {{\lambda }_{1}},3-2{{\lambda }_{1}},-2{{\lambda }_{1}}-1 \right)$ ---(3).
Let us assume the value of ${{\lambda }_{1}}$ as $\dfrac{1}{2}$. We substitute in equation (3).
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},3-2\left( \dfrac{1}{2} \right),-2\left( \dfrac{1}{2} \right)-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},3-1,-1-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},2,-2 \right)$ ---(4).
Let us assume the value of ${{\lambda }_{1}}$ as $\dfrac{-1}{2}$. We substitute in equation (3).
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},3-2\left( \dfrac{-1}{2} \right),-2\left( \dfrac{-1}{2} \right)-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},3+1,+1-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},4,0 \right)$ ---(5).
Let us assume the value of ${{\lambda }_{1}}$ as 1. We substitute in equation (3).
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,3-2\left( 1 \right),-2\left( 1 \right)-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,3-2,-2-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,1,-3 \right)$ ---(6).
From equations (4), (5) and (6), we can see there is only one option matching our answer i.e., $\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},4,0 \right)$.
We have found one of the possible values of $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)$ as $\left( \dfrac{-1}{2},4,0 \right)$.
So, the correct answer is “Option b”.
Note: We can get other condition as the vector $\vec{b}$ is perpendicular to $\vec{c}$ as vector $\vec{b}$ is parallel to the vector $\vec{a}$. This condition also leads to the same condition as equation (1) which makes our problem not solvable for a single solution. Since we have only two equations for solving three variables, we could not get a single definite solution. Instead, we get infinite no. of solutions for the given problem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

