
Let $\vec{a}=2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k}$, $\vec{b}=4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}$ and $\vec{c}=3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k}$ be three vectors such that $\vec{b}=2\vec{a}$ and $\vec{a}$ is perpendicular to $\vec{c}$, then find the possible value of $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)$?
(a) $\left( \dfrac{1}{2},4,-2 \right)$,
(b) $\left( -\dfrac{1}{2},4,0 \right)$,
(c) $\left( 1,3,1 \right)$,
(d) $\left( 1,5,1 \right)$.
Answer
511.5k+ views
Hint: We start solving the problem by using the given condition $\vec{b}=2\vec{a}$ to get the relation between ${{\lambda }_{1}}$ and ${{\lambda }_{2}}$. We use the fact that the dot product of product of two perpendicular vectors is zero for the vectors $\vec{a}$ and $\vec{c}$ to get the relation between the ${{\lambda }_{1}}$ and ${{\lambda }_{3}}$. We assume the values for ${{\lambda }_{1}}$ as per the requirement of the problem to get the desired result.
Complete step-by-step answer:
According to the problem, we have three vectors given as $\vec{a}=2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k}$, $\vec{b}=4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}$ and $\vec{c}=3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k}$. It is also said that $\vec{b}=2\vec{a}$ and $\vec{a}$ is perpendicular to $\vec{c}$. We need to find the possible value of $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)$.
Let us use our first condition $\vec{b}=2\vec{a}$.
$\Rightarrow 4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}=2\times \left( 2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k} \right)$.
$\Rightarrow 4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}=4\hat{i}+2{{\lambda }_{1}}\hat{j}+6\hat{k}$.
We compare the coefficients of $\hat{j}$ on both sides.
$\Rightarrow 3-{{\lambda }_{2}}=2{{\lambda }_{1}}$
$\Rightarrow {{\lambda }_{2}}=3-2{{\lambda }_{1}}$ ---(1).
We have our second condition as $\vec{a}$ is perpendicular to $\vec{c}$. We know that the dot product of two perpendicular vectors is zero.
So, we have $\vec{a}\bullet \vec{c}=0$.
$\Rightarrow \left( 2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k} \right)\bullet \left( 3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k} \right)=0$.
We know that dot product of two vectors $a\hat{i}+b\hat{j}+c\hat{k}$ and $d\hat{i}+e\hat{j}+f\hat{k}$ is defined as \[\left( a\hat{i}+b\hat{j}+c\hat{k} \right)\bullet \left( d\hat{i}+e\hat{j}+f\hat{k} \right)=ad+be+cf\].
$\Rightarrow \left( 2\times 3 \right)+\left( {{\lambda }_{1}}\times 6 \right)+\left( 3\times \left( {{\lambda }_{3}}-1 \right) \right)=0$.
\[\Rightarrow 6+6{{\lambda }_{1}}+3{{\lambda }_{3}}-3=0\].
\[\Rightarrow 6{{\lambda }_{1}}+3{{\lambda }_{3}}+3=0\].
\[\Rightarrow 2{{\lambda }_{1}}+{{\lambda }_{3}}+1=0\].
\[\Rightarrow {{\lambda }_{3}}=-2{{\lambda }_{1}}-1\] ---(2).
From equations (1) and (2), we got $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( {{\lambda }_{1}},3-2{{\lambda }_{1}},-2{{\lambda }_{1}}-1 \right)$ ---(3).
Let us assume the value of ${{\lambda }_{1}}$ as $\dfrac{1}{2}$. We substitute in equation (3).
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},3-2\left( \dfrac{1}{2} \right),-2\left( \dfrac{1}{2} \right)-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},3-1,-1-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},2,-2 \right)$ ---(4).
Let us assume the value of ${{\lambda }_{1}}$ as $\dfrac{-1}{2}$. We substitute in equation (3).
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},3-2\left( \dfrac{-1}{2} \right),-2\left( \dfrac{-1}{2} \right)-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},3+1,+1-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},4,0 \right)$ ---(5).
Let us assume the value of ${{\lambda }_{1}}$ as 1. We substitute in equation (3).
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,3-2\left( 1 \right),-2\left( 1 \right)-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,3-2,-2-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,1,-3 \right)$ ---(6).
From equations (4), (5) and (6), we can see there is only one option matching our answer i.e., $\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},4,0 \right)$.
We have found one of the possible values of $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)$ as $\left( \dfrac{-1}{2},4,0 \right)$.
So, the correct answer is “Option b”.
Note: We can get other condition as the vector $\vec{b}$ is perpendicular to $\vec{c}$ as vector $\vec{b}$ is parallel to the vector $\vec{a}$. This condition also leads to the same condition as equation (1) which makes our problem not solvable for a single solution. Since we have only two equations for solving three variables, we could not get a single definite solution. Instead, we get infinite no. of solutions for the given problem.
Complete step-by-step answer:
According to the problem, we have three vectors given as $\vec{a}=2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k}$, $\vec{b}=4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}$ and $\vec{c}=3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k}$. It is also said that $\vec{b}=2\vec{a}$ and $\vec{a}$ is perpendicular to $\vec{c}$. We need to find the possible value of $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)$.
Let us use our first condition $\vec{b}=2\vec{a}$.
$\Rightarrow 4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}=2\times \left( 2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k} \right)$.
$\Rightarrow 4\hat{i}+\left( 3-{{\lambda }_{2}} \right)\hat{j}+6\hat{k}=4\hat{i}+2{{\lambda }_{1}}\hat{j}+6\hat{k}$.
We compare the coefficients of $\hat{j}$ on both sides.
$\Rightarrow 3-{{\lambda }_{2}}=2{{\lambda }_{1}}$
$\Rightarrow {{\lambda }_{2}}=3-2{{\lambda }_{1}}$ ---(1).
We have our second condition as $\vec{a}$ is perpendicular to $\vec{c}$. We know that the dot product of two perpendicular vectors is zero.
So, we have $\vec{a}\bullet \vec{c}=0$.
$\Rightarrow \left( 2\hat{i}+{{\lambda }_{1}}\hat{j}+3\hat{k} \right)\bullet \left( 3\hat{i}+6\hat{j}+\left( {{\lambda }_{3}}-1 \right)\hat{k} \right)=0$.
We know that dot product of two vectors $a\hat{i}+b\hat{j}+c\hat{k}$ and $d\hat{i}+e\hat{j}+f\hat{k}$ is defined as \[\left( a\hat{i}+b\hat{j}+c\hat{k} \right)\bullet \left( d\hat{i}+e\hat{j}+f\hat{k} \right)=ad+be+cf\].
$\Rightarrow \left( 2\times 3 \right)+\left( {{\lambda }_{1}}\times 6 \right)+\left( 3\times \left( {{\lambda }_{3}}-1 \right) \right)=0$.
\[\Rightarrow 6+6{{\lambda }_{1}}+3{{\lambda }_{3}}-3=0\].
\[\Rightarrow 6{{\lambda }_{1}}+3{{\lambda }_{3}}+3=0\].
\[\Rightarrow 2{{\lambda }_{1}}+{{\lambda }_{3}}+1=0\].
\[\Rightarrow {{\lambda }_{3}}=-2{{\lambda }_{1}}-1\] ---(2).
From equations (1) and (2), we got $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( {{\lambda }_{1}},3-2{{\lambda }_{1}},-2{{\lambda }_{1}}-1 \right)$ ---(3).
Let us assume the value of ${{\lambda }_{1}}$ as $\dfrac{1}{2}$. We substitute in equation (3).
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},3-2\left( \dfrac{1}{2} \right),-2\left( \dfrac{1}{2} \right)-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},3-1,-1-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{1}{2},2,-2 \right)$ ---(4).
Let us assume the value of ${{\lambda }_{1}}$ as $\dfrac{-1}{2}$. We substitute in equation (3).
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},3-2\left( \dfrac{-1}{2} \right),-2\left( \dfrac{-1}{2} \right)-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},3+1,+1-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},4,0 \right)$ ---(5).
Let us assume the value of ${{\lambda }_{1}}$ as 1. We substitute in equation (3).
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,3-2\left( 1 \right),-2\left( 1 \right)-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,3-2,-2-1 \right)$.
$\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( 1,1,-3 \right)$ ---(6).
From equations (4), (5) and (6), we can see there is only one option matching our answer i.e., $\Rightarrow \left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)=\left( \dfrac{-1}{2},4,0 \right)$.
We have found one of the possible values of $\left( {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}} \right)$ as $\left( \dfrac{-1}{2},4,0 \right)$.
So, the correct answer is “Option b”.
Note: We can get other condition as the vector $\vec{b}$ is perpendicular to $\vec{c}$ as vector $\vec{b}$ is parallel to the vector $\vec{a}$. This condition also leads to the same condition as equation (1) which makes our problem not solvable for a single solution. Since we have only two equations for solving three variables, we could not get a single definite solution. Instead, we get infinite no. of solutions for the given problem.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
