
Let \[{{S}_{n}}=\dfrac{1}{1+\sqrt{n}}+\dfrac{1}{2+\sqrt{2n}}+\ldots +\dfrac{1}{n+\sqrt{{{n}^{2}}}}\], then find the limit of \[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\].
Answer
618.6k+ views
Hint: Convert summation to integral using Riemann integral concept and then apply the limits.
Consider the given expression,
\[{{S}_{n}}=\dfrac{1}{1+\sqrt{n}}+\dfrac{1}{2+\sqrt{2n}}+\ldots +\dfrac{1}{n+\sqrt{{{n}^{2}}}}\]
This can be converted to summation as,
\[{{S}_{n}}=\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{1}{r+\sqrt{rn}}\]
Now we will apply limits, we get
\[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{1}{r+\sqrt{rn}}\]
Now dividing numerator and denominator by n, we get
\[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{\left( r+\sqrt{rn} \right)}{n}}\]
In the denominator we will separate the terms, then we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{r}{n}+\dfrac{\sqrt{rn}}{n}}\]
Taking the $'n'$ inside the root we get,
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{r}{n}+\sqrt{\dfrac{rn}{{{n}^{2}}}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{r}{n}+\sqrt{\dfrac{r}{n}}}\ldots \ldots \left( i \right)\]
Now we know the way to solve the summation limit is to convert the summation into integral.
For this first let us assume
\[\dfrac{r}{n}=x\Rightarrow \dfrac{1}{n}=dx\]
Let’s find the limits,
When \[r=1\], then $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{r}{n}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}=0$ , therefore, $x=0$.
When $r=n$ , then $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{r}{n}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{n}{n}=1$, therefore, $x=1$.
Considering these values the summation can be written as integral form. We get,
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{r}{n}+\sqrt{\dfrac{r}{n}}}=\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}\ldots \ldots \ldots \left( ii \right)\]
Now we will find the integration as follows:
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\sqrt{x}\left( \sqrt{x}+1 \right)}\ldots \ldots .\left( iii \right)\]
Let’s substitute,
\[u=\sqrt{x}+1\]
Differentiating, we get
\[du=\dfrac{1}{2\sqrt{x}}dx\Rightarrow dx=2\sqrt{x}du\]
Substituting these values in equation (iii), we get
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{2\sqrt{x}du}{\sqrt{x}\left( u \right)}\]
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=2\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{u}du\]
But we know, $\mathop{\int }^{}\dfrac{1}{u}=\ln u$ , so above equation becomes,
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=2\left[ lnu \right]_{0}^{1}\]
Substituting back the value of u, we get
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=2\left[ \ln (\sqrt{x}+1) \right]_{0}^{1}\]
Applying the upper and lower bounds, we get
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=2\left[ \ln (\sqrt{1}+1 \right)\left] -2 \right[\ln (\sqrt{0}+1)]\]
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=2\left[ \ln 2\left] -2 \right[\ln (1 \right)]\]
But we know, $ln1=0$, so we get
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=2\left[ ln2 \right]-0\]
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=\left[ \ln {{2}^{2}} \right]=\ln 4\]
Substituting this in equation (ii), we get
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{r}{n}+\sqrt{\dfrac{r}{n}}}=\ln 4\]
Substituting this value in equation (i), we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\ln 4\]
As the RHS is free of variable, so we can remove the limit, so we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\ln 4\]
Note: The possibility for the mistake is that in the following equation,
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{r}{n}+\sqrt{\dfrac{rn}{{{n}^{2}}}}}\]
we see that the n2 term becomes ‘n’ when taken out of the square root.
So, instead of dividing by n2 we can just divide the ‘r’ by ‘n’ and we won’t get the same answer.
One more possible mistake is when converting the summation to integral, the student will get confused on how to get the limit of integral.
Consider the given expression,
\[{{S}_{n}}=\dfrac{1}{1+\sqrt{n}}+\dfrac{1}{2+\sqrt{2n}}+\ldots +\dfrac{1}{n+\sqrt{{{n}^{2}}}}\]
This can be converted to summation as,
\[{{S}_{n}}=\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{1}{r+\sqrt{rn}}\]
Now we will apply limits, we get
\[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{1}{r+\sqrt{rn}}\]
Now dividing numerator and denominator by n, we get
\[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{\left( r+\sqrt{rn} \right)}{n}}\]
In the denominator we will separate the terms, then we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{r}{n}+\dfrac{\sqrt{rn}}{n}}\]
Taking the $'n'$ inside the root we get,
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{r}{n}+\sqrt{\dfrac{rn}{{{n}^{2}}}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{r}{n}+\sqrt{\dfrac{r}{n}}}\ldots \ldots \left( i \right)\]
Now we know the way to solve the summation limit is to convert the summation into integral.
For this first let us assume
\[\dfrac{r}{n}=x\Rightarrow \dfrac{1}{n}=dx\]
Let’s find the limits,
When \[r=1\], then $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{r}{n}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}=0$ , therefore, $x=0$.
When $r=n$ , then $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{r}{n}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{n}{n}=1$, therefore, $x=1$.
Considering these values the summation can be written as integral form. We get,
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{r}{n}+\sqrt{\dfrac{r}{n}}}=\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}\ldots \ldots \ldots \left( ii \right)\]
Now we will find the integration as follows:
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\sqrt{x}\left( \sqrt{x}+1 \right)}\ldots \ldots .\left( iii \right)\]
Let’s substitute,
\[u=\sqrt{x}+1\]
Differentiating, we get
\[du=\dfrac{1}{2\sqrt{x}}dx\Rightarrow dx=2\sqrt{x}du\]
Substituting these values in equation (iii), we get
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{2\sqrt{x}du}{\sqrt{x}\left( u \right)}\]
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=2\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{u}du\]
But we know, $\mathop{\int }^{}\dfrac{1}{u}=\ln u$ , so above equation becomes,
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=2\left[ lnu \right]_{0}^{1}\]
Substituting back the value of u, we get
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=2\left[ \ln (\sqrt{x}+1) \right]_{0}^{1}\]
Applying the upper and lower bounds, we get
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=2\left[ \ln (\sqrt{1}+1 \right)\left] -2 \right[\ln (\sqrt{0}+1)]\]
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=2\left[ \ln 2\left] -2 \right[\ln (1 \right)]\]
But we know, $ln1=0$, so we get
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=2\left[ ln2 \right]-0\]
\[\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{x+\sqrt{x}}=\left[ \ln {{2}^{2}} \right]=\ln 4\]
Substituting this in equation (ii), we get
\[\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{r}{n}+\sqrt{\dfrac{r}{n}}}=\ln 4\]
Substituting this value in equation (i), we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\ln 4\]
As the RHS is free of variable, so we can remove the limit, so we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\ln 4\]
Note: The possibility for the mistake is that in the following equation,
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\dfrac{r}{n}+\sqrt{\dfrac{rn}{{{n}^{2}}}}}\]
we see that the n2 term becomes ‘n’ when taken out of the square root.
So, instead of dividing by n2 we can just divide the ‘r’ by ‘n’ and we won’t get the same answer.
One more possible mistake is when converting the summation to integral, the student will get confused on how to get the limit of integral.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

