
Let R be a relation from A = \[\left\{ {1,2,3,4} \right\}\]to B = \[\left\{ {1,3,5} \right\}\]i.e. \[\left( {a,b} \right) \in R\], if \[a{\rm{ }} < {\rm{ }}b\] then find \[RO{R^{ - 1}}\]
Answer
572.7k+ views
Hint: According the question find out the relation R from A and B if \[a{\rm{ }} < {\rm{ }}b\] and also find out inverse using relation R. Then calculate \[RO{R^{ - 1}}\].
Complete step-by-step answer:
Firstly, here we will calculate the relation R that is \[(a,b)\] that is to be formed by using the condition \[a{\rm{ }} < {\rm{ }}b\] .
It is given that A = \[\left\{ {1,2,3,4} \right\}\]and B = \[\left\{ {1,3,5} \right\}\].
So, relation R = \[\left\{ {\left( {1,3} \right),\left( {1,5} \right),\left( {2,3} \right),\left( {2,5} \right),\left( {3,5} \right),\left( {4,5} \right)} \right\}\]
Now, we will calculate \[{R^{ - 1}}\] that is \[(b,a)\] by reversing all the set values in relation R.
So, \[{R^{ - 1}} = \left\{ {\left( {3,1} \right),\left( {5,1} \right),\left( {3,2} \right),\left( {5,2} \right),\left( {3,5} \right),\left( {5,4} \right)} \right\}\]
Here, taking one by one all the values of relation \[{R^{ - 1}}\] that is \[(a,b)\]and then find out in relation R which is starting from b that is \[(b,c)\] . Through which we can calculate the relation \[RO{R^{ - 1}}\]that is \[(a,c)\] .
As, \[RO{R^{ - 1}} = \left( {3,1} \right) \in {R^{ - 1}}\] and \[\left( {1,5} \right) \in R\]
Then, \[\left( {3,5} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {3,1} \right) \in {R^{ - 1}}\] and \[\left( {1,3} \right) \in R\]
Then, \[\left( {3,3} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {5,1} \right) \in {R^{ - 1}}\] and \[\left( {1,3} \right) \in R\]
Then, \[\left( {5,3} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {5,1} \right) \in {R^{ - 1}}\] and \[\left( {1,5} \right) \in R\]
Then, \[\left( {5,5} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {3,2} \right) \in {R^{ - 1}}\] and \[\left( {2,3} \right) \in R\]
Then, \[\left( {3,3} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {3,2} \right) \in {R^{ - 1}}\] and \[\left( {2,5} \right) \in R\]
Then, \[\left( {3,5} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {5,2} \right) \in {R^{ - 1}}\] and \[\left( {2,3} \right) \in R\]
Then, \[\left( {5,3} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {5,2} \right) \in {R^{ - 1}}\] and \[\left( {2,5} \right) \in R\]
Then, \[\left( {5,5} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {3,5} \right) \in {R^{ - 1}}\]but there is not any set that starts from 5 in relation R. So, \[RO{R^{ - 1}}\] cannot be formed.
As, \[RO{R^{ - 1}} = \left( {5,4} \right) \in {R^{ - 1}}\] and \[\left( {4,5} \right) \in R\]
Then, \[\left( {5,5} \right) \in RO{R^{ - 1}}\]
Therefore as of now, we will take all the values of \[RO{R^{ - 1}}\]without repeating and put them in a relation function.
Hence, \[RO{R^{ - 1}} = \left\{ {\left( {3,3} \right),\left( {3,5} \right),\left( {5,3} \right),\left( {5,5} \right)} \right\}\]
Note: To solve these types of questions, you need to calculate relation R using the given condition. As, in the above question it is required to calculate \[RO{R^{ - 1}}\] from which we also need to calculate \[{R^{ - 1}}\] .
As, it important to see first the value of \[{R^{ - 1}}\] that is \[\left( {a,b} \right)\] then use the values from R that is \[\left( {b,c} \right)\]
And hence \[RO{R^{ - 1}}\]is calculated \[\left( {a,c} \right)\]. So, by following the above method we can calculate any required value.
Complete step-by-step answer:
Firstly, here we will calculate the relation R that is \[(a,b)\] that is to be formed by using the condition \[a{\rm{ }} < {\rm{ }}b\] .
It is given that A = \[\left\{ {1,2,3,4} \right\}\]and B = \[\left\{ {1,3,5} \right\}\].
So, relation R = \[\left\{ {\left( {1,3} \right),\left( {1,5} \right),\left( {2,3} \right),\left( {2,5} \right),\left( {3,5} \right),\left( {4,5} \right)} \right\}\]
Now, we will calculate \[{R^{ - 1}}\] that is \[(b,a)\] by reversing all the set values in relation R.
So, \[{R^{ - 1}} = \left\{ {\left( {3,1} \right),\left( {5,1} \right),\left( {3,2} \right),\left( {5,2} \right),\left( {3,5} \right),\left( {5,4} \right)} \right\}\]
Here, taking one by one all the values of relation \[{R^{ - 1}}\] that is \[(a,b)\]and then find out in relation R which is starting from b that is \[(b,c)\] . Through which we can calculate the relation \[RO{R^{ - 1}}\]that is \[(a,c)\] .
As, \[RO{R^{ - 1}} = \left( {3,1} \right) \in {R^{ - 1}}\] and \[\left( {1,5} \right) \in R\]
Then, \[\left( {3,5} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {3,1} \right) \in {R^{ - 1}}\] and \[\left( {1,3} \right) \in R\]
Then, \[\left( {3,3} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {5,1} \right) \in {R^{ - 1}}\] and \[\left( {1,3} \right) \in R\]
Then, \[\left( {5,3} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {5,1} \right) \in {R^{ - 1}}\] and \[\left( {1,5} \right) \in R\]
Then, \[\left( {5,5} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {3,2} \right) \in {R^{ - 1}}\] and \[\left( {2,3} \right) \in R\]
Then, \[\left( {3,3} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {3,2} \right) \in {R^{ - 1}}\] and \[\left( {2,5} \right) \in R\]
Then, \[\left( {3,5} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {5,2} \right) \in {R^{ - 1}}\] and \[\left( {2,3} \right) \in R\]
Then, \[\left( {5,3} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {5,2} \right) \in {R^{ - 1}}\] and \[\left( {2,5} \right) \in R\]
Then, \[\left( {5,5} \right) \in RO{R^{ - 1}}\]
As, \[RO{R^{ - 1}} = \left( {3,5} \right) \in {R^{ - 1}}\]but there is not any set that starts from 5 in relation R. So, \[RO{R^{ - 1}}\] cannot be formed.
As, \[RO{R^{ - 1}} = \left( {5,4} \right) \in {R^{ - 1}}\] and \[\left( {4,5} \right) \in R\]
Then, \[\left( {5,5} \right) \in RO{R^{ - 1}}\]
Therefore as of now, we will take all the values of \[RO{R^{ - 1}}\]without repeating and put them in a relation function.
Hence, \[RO{R^{ - 1}} = \left\{ {\left( {3,3} \right),\left( {3,5} \right),\left( {5,3} \right),\left( {5,5} \right)} \right\}\]
Note: To solve these types of questions, you need to calculate relation R using the given condition. As, in the above question it is required to calculate \[RO{R^{ - 1}}\] from which we also need to calculate \[{R^{ - 1}}\] .
As, it important to see first the value of \[{R^{ - 1}}\] that is \[\left( {a,b} \right)\] then use the values from R that is \[\left( {b,c} \right)\]
And hence \[RO{R^{ - 1}}\]is calculated \[\left( {a,c} \right)\]. So, by following the above method we can calculate any required value.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

