
Let \[P\left( {asec\theta ,btan\theta } \right)\] and \[Q\left( {asec\phi ,btan\phi } \right),\] where $\theta + \Phi = \dfrac{\pi }{2}$ , be two points on the hyperbola $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$ . If $(h,k)$ is the point of intersection of the normal at P & Q, then k is equal to
(A) $\dfrac{{{a^2} + {b^2}}}{a}$
(B) $ - \left( {\dfrac{{{a^2} + {b^2}}}{a}} \right)$
(C) $\dfrac{{{a^2} + {b^2}}}{b}$
(D) $ - \left( {\dfrac{{{a^2} + {b^2}}}{b}} \right)$
Answer
587.4k+ views
Hint:The equation of normal at $(a\sec \theta ,b\tan \theta )$ to the hyperbola $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$ is $ax\cos \theta + bycot\theta = {a^2} + {b^2}$ . If (h,k) the point of intersection of the normal. Then in the place x,y we will put (h,k). The equation of normal becomes $ah\cos \theta + bk\cot \theta = {a^2} + {b^2}$.
Complete step-by-step answer:
The normal of the Hyperbola is HK.
The equation of normal at $(a\sec \theta ,b\tan \theta )$ to the hyperbola $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$ is$ax\cos \theta + bycot\theta = {a^2} + {b^2}$ .
Therefore, normal at $\theta ,\Phi $ are
$ax\cos \theta + by\cot \Phi = {a^2} + {b^2}$
$ax\cos \Phi + by\cot \Phi = {a^2} + {b^2}$
Given, $\theta + \Phi = \dfrac{\pi }{2}$
Therefore, $\Phi = \dfrac{\pi }{2} - \theta $ and these passes through (h,k)
Therefore, $ah\cos \theta + bk\cot \theta = {a^2} + {b^2}.........(1)$
Multiplying equation (1) by $\sin \theta $ , we get
$ah\operatorname{Cos} \theta \operatorname{Sin} \theta + bk\operatorname{Cos} \theta = ({a^2} + {b^2})\operatorname{Sin} \theta $
And,
$ah\sin \theta + bk\tan \theta = {a^2} + {b^2}...........(2)$
Multiplying equation (2) by $\operatorname{Cos} \theta $ , we get
$ah\operatorname{Sin} \theta \operatorname{Cos} \theta + bk\tan \theta \operatorname{Cos} \theta = ({a^2} + {b^2})\operatorname{Cos} \theta $
Subtract, Both the equations (1) and (2),
$
\Rightarrow (bk + {a^2} + {b^2})(\operatorname{Sin} \theta - \operatorname{Cos} \theta ) = 0 \\
\Rightarrow k = - \left( {\dfrac{{{a^2} + {b^2}}}{b}} \right)$
So, the correct answer is “Option D”.
Note:
The Normal is HK.
For the hyperbola $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$, The equation of normal in different forms are-
In the cartesian form equation of normal at point \[({x_1},{y_1})\] is $y - {y_1} = \dfrac{{ - {y_1}{a^2}}}{{{x_1}{b^2}}}(x - {x_1}),{x_1} \ne 0$
In the parametric form, equation of normal at $(a\sec \theta ,b\tan \theta )$ is $ax\cos \theta + bycot\theta = {a^2} + {b^2}$
Complete step-by-step answer:
The normal of the Hyperbola is HK.
The equation of normal at $(a\sec \theta ,b\tan \theta )$ to the hyperbola $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$ is$ax\cos \theta + bycot\theta = {a^2} + {b^2}$ .
Therefore, normal at $\theta ,\Phi $ are
$ax\cos \theta + by\cot \Phi = {a^2} + {b^2}$
$ax\cos \Phi + by\cot \Phi = {a^2} + {b^2}$
Given, $\theta + \Phi = \dfrac{\pi }{2}$
Therefore, $\Phi = \dfrac{\pi }{2} - \theta $ and these passes through (h,k)
Therefore, $ah\cos \theta + bk\cot \theta = {a^2} + {b^2}.........(1)$
Multiplying equation (1) by $\sin \theta $ , we get
$ah\operatorname{Cos} \theta \operatorname{Sin} \theta + bk\operatorname{Cos} \theta = ({a^2} + {b^2})\operatorname{Sin} \theta $
And,
$ah\sin \theta + bk\tan \theta = {a^2} + {b^2}...........(2)$
Multiplying equation (2) by $\operatorname{Cos} \theta $ , we get
$ah\operatorname{Sin} \theta \operatorname{Cos} \theta + bk\tan \theta \operatorname{Cos} \theta = ({a^2} + {b^2})\operatorname{Cos} \theta $
Subtract, Both the equations (1) and (2),
$
\Rightarrow (bk + {a^2} + {b^2})(\operatorname{Sin} \theta - \operatorname{Cos} \theta ) = 0 \\
\Rightarrow k = - \left( {\dfrac{{{a^2} + {b^2}}}{b}} \right)$
So, the correct answer is “Option D”.
Note:
The Normal is HK.
For the hyperbola $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$, The equation of normal in different forms are-
In the cartesian form equation of normal at point \[({x_1},{y_1})\] is $y - {y_1} = \dfrac{{ - {y_1}{a^2}}}{{{x_1}{b^2}}}(x - {x_1}),{x_1} \ne 0$
In the parametric form, equation of normal at $(a\sec \theta ,b\tan \theta )$ is $ax\cos \theta + bycot\theta = {a^2} + {b^2}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

