
Let \[P\left( 4,-4 \right)\] and \[Q\left( 9,6 \right)\] be two points on a parabola \[{{y}^{2}}=4x\] and X be a point on the arc POQ of this parabola, where O is the vertex of this parabola, such that the area of \[\Delta PXQ\] is maximum. Then this maximum area is:
\[\begin{align}
& A)\dfrac{125}{4} \\
& B)\dfrac{125}{2} \\
& C)\dfrac{625}{4} \\
& D)\dfrac{75}{2} \\
\end{align}\]
Answer
511.8k+ views
Hint: We know that a general point on the parabola \[{{y}^{2}}=4ax\] is \[X\left( a{{t}^{2}},2at \right)\]. We know that the area of triangle whose vertices are \[P\left( {{x}_{1}},{{y}_{1}} \right)\] , \[Q\left( {{x}_{2}},{{y}_{2}} \right)\] and \[R\left( {{x}_{3}},{{y}_{3}} \right)\], then the area of triangle \[\Delta PXQ\] is equal to \[\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|\]. We know that the value of \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-ge \right)\]. By using these concepts, we can find the value of maximum area.
Complete step-by-step solution:
From the question, it was given that \[P\left( 4,-4 \right)\] and \[Q\left( 9,6 \right)\] be two points on a parabola \[{{y}^{2}}=4x\] and X be a point on the arc POQ of this parabola, where O is the vertex of this parabola.
Now let us compare \[{{y}^{2}}=4x\] with \[{{y}^{2}}=4ax\]. It is clear that the value of a is equal to 1.
We know that a general point on the parabola \[{{y}^{2}}=4ax\]is \[X\left( a{{t}^{2}},2at \right)\].
Now we should find a general point X on the parabola \[{{y}^{2}}=4x\].
So, it is clear that a general point on the parabola \[{{y}^{2}}=4ax\] is \[X\left( {{t}^{2}},2t \right)\].
Now we should find the area of triangle \[\Delta PXQ\] whose vertices are \[P\left( 4,-4 \right)\] , \[Q\left( 9,6 \right)\] and \[X\left( {{t}^{2}},2t \right)\].
We know that the area of triangle whose vertices are \[P\left( {{x}_{1}},{{y}_{1}} \right)\] , \[Q\left( {{x}_{2}},{{y}_{2}} \right)\] and \[R\left( {{x}_{3}},{{y}_{3}} \right)\], then the area of triangle \[\Delta PXQ\] is equal to \[\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|\].
By using this formula, we should find the area of triangle \[\Delta PXQ\] whose vertices are \[P\left( 4,-4 \right)\] , \[Q\left( 9,6 \right)\]and \[X\left( {{t}^{2}},2t \right)\].
Let us assume this area is equal to A.
\[\Rightarrow A=\dfrac{1}{2}\left| \begin{matrix}
4 & -4 & 1 \\
9 & 6 & 1 \\
{{t}^{2}} & 2t & 1 \\
\end{matrix} \right|\]
We know that the value of \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-ge \right)\].
\[\begin{align}
& \Rightarrow A=\left( \dfrac{4\left( (6)(1)-(1)(2t) \right)-(-4)\left( (9)(1)-(1)({{t}^{2}}) \right)+1\left( (9)(2t)-(6)({{t}^{2}}) \right)}{2} \right) \\
& \Rightarrow A=\left( \dfrac{4\left( 6-2t \right)+4\left( 9-{{t}^{2}} \right)+\left( 18t-6{{t}^{2}} \right)}{2} \right) \\
& \Rightarrow A=\left( \dfrac{24-8t+36-4{{t}^{2}}+18t-6{{t}^{2}}}{2} \right) \\
& \Rightarrow A=\left( \dfrac{-10{{t}^{2}}+10t+60}{2} \right) \\
& \Rightarrow A=-5{{t}^{2}}+5t+30 \\
\end{align}\]
Now we should find the maximum value of A.
Now let us compare A with \[a{{x}^{2}}+bx+c\]. Then we get the value of a is equal to -5, the value of b is equal to 5 and the value of c is equal to 30.
We know that the maximum value of \[a{{x}^{2}}+bx+c\](if \[a<0\]) is equal to \[\dfrac{4ac-{{b}^{2}}}{4a}\] at \[x=\dfrac{-b}{2a}\].
Now by substituting the values if a, b and c we can find the maximum value of A.
Let us assume the maximum value of A is equal to \[{{A}_{\max }}\].
\[\begin{align}
& \Rightarrow {{A}_{\max }}=\dfrac{4\left( -5 \right)\left( 30 \right)-{{\left( 5 \right)}^{2}}}{4\left( -10 \right)} \\
& \Rightarrow {{A}_{\max }}=\dfrac{-600-25}{-20} \\
& \Rightarrow {{A}_{\max }}=\dfrac{625}{20} \\
& \Rightarrow {{A}_{\max }}=\dfrac{125}{4} \\
\end{align}\]
So, it is clear that maximum area of \[\Delta PXQ\] is equal to \[\dfrac{125}{4}\].
Hence, option A is correct.
Note: Students may have a misconception that the value of \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)+b\left( di-fg \right)+c\left( dh-ge \right)\]. If this misconception is followed, then we cannot get the correct value of maximum area of \[\Delta PXQ\]. So, this misconception should be avoided. So, students should have a clear view of this concept.
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|\]. We know that the value of \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-ge \right)\]. By using these concepts, we can find the value of maximum area.
Complete step-by-step solution:
From the question, it was given that \[P\left( 4,-4 \right)\] and \[Q\left( 9,6 \right)\] be two points on a parabola \[{{y}^{2}}=4x\] and X be a point on the arc POQ of this parabola, where O is the vertex of this parabola.
Now let us compare \[{{y}^{2}}=4x\] with \[{{y}^{2}}=4ax\]. It is clear that the value of a is equal to 1.
We know that a general point on the parabola \[{{y}^{2}}=4ax\]is \[X\left( a{{t}^{2}},2at \right)\].
Now we should find a general point X on the parabola \[{{y}^{2}}=4x\].
So, it is clear that a general point on the parabola \[{{y}^{2}}=4ax\] is \[X\left( {{t}^{2}},2t \right)\].
Now we should find the area of triangle \[\Delta PXQ\] whose vertices are \[P\left( 4,-4 \right)\] , \[Q\left( 9,6 \right)\] and \[X\left( {{t}^{2}},2t \right)\].

We know that the area of triangle whose vertices are \[P\left( {{x}_{1}},{{y}_{1}} \right)\] , \[Q\left( {{x}_{2}},{{y}_{2}} \right)\] and \[R\left( {{x}_{3}},{{y}_{3}} \right)\], then the area of triangle \[\Delta PXQ\] is equal to \[\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|\].
By using this formula, we should find the area of triangle \[\Delta PXQ\] whose vertices are \[P\left( 4,-4 \right)\] , \[Q\left( 9,6 \right)\]and \[X\left( {{t}^{2}},2t \right)\].
Let us assume this area is equal to A.
\[\Rightarrow A=\dfrac{1}{2}\left| \begin{matrix}
4 & -4 & 1 \\
9 & 6 & 1 \\
{{t}^{2}} & 2t & 1 \\
\end{matrix} \right|\]
We know that the value of \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-ge \right)\].
\[\begin{align}
& \Rightarrow A=\left( \dfrac{4\left( (6)(1)-(1)(2t) \right)-(-4)\left( (9)(1)-(1)({{t}^{2}}) \right)+1\left( (9)(2t)-(6)({{t}^{2}}) \right)}{2} \right) \\
& \Rightarrow A=\left( \dfrac{4\left( 6-2t \right)+4\left( 9-{{t}^{2}} \right)+\left( 18t-6{{t}^{2}} \right)}{2} \right) \\
& \Rightarrow A=\left( \dfrac{24-8t+36-4{{t}^{2}}+18t-6{{t}^{2}}}{2} \right) \\
& \Rightarrow A=\left( \dfrac{-10{{t}^{2}}+10t+60}{2} \right) \\
& \Rightarrow A=-5{{t}^{2}}+5t+30 \\
\end{align}\]
Now we should find the maximum value of A.
Now let us compare A with \[a{{x}^{2}}+bx+c\]. Then we get the value of a is equal to -5, the value of b is equal to 5 and the value of c is equal to 30.
We know that the maximum value of \[a{{x}^{2}}+bx+c\](if \[a<0\]) is equal to \[\dfrac{4ac-{{b}^{2}}}{4a}\] at \[x=\dfrac{-b}{2a}\].
Now by substituting the values if a, b and c we can find the maximum value of A.
Let us assume the maximum value of A is equal to \[{{A}_{\max }}\].
\[\begin{align}
& \Rightarrow {{A}_{\max }}=\dfrac{4\left( -5 \right)\left( 30 \right)-{{\left( 5 \right)}^{2}}}{4\left( -10 \right)} \\
& \Rightarrow {{A}_{\max }}=\dfrac{-600-25}{-20} \\
& \Rightarrow {{A}_{\max }}=\dfrac{625}{20} \\
& \Rightarrow {{A}_{\max }}=\dfrac{125}{4} \\
\end{align}\]
So, it is clear that maximum area of \[\Delta PXQ\] is equal to \[\dfrac{125}{4}\].
Hence, option A is correct.
Note: Students may have a misconception that the value of \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)+b\left( di-fg \right)+c\left( dh-ge \right)\]. If this misconception is followed, then we cannot get the correct value of maximum area of \[\Delta PXQ\]. So, this misconception should be avoided. So, students should have a clear view of this concept.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
