
Let $P\left( 3\sec \theta ,2\tan \theta \right)$ and $Q\left( 3\sec \phi ,2\tan \phi \right)$ where $\theta +\phi =\dfrac{\pi }{2}$ , be two distinct points on the hyperbola $\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1$ . Then the ordinate of the point of intersection of the normals at P and Q is :-
A. $\dfrac{11}{3}$,
B. $-\dfrac{11}{3}$,
C. $-\dfrac{13}{2}$,
D. $\dfrac{13}{2}$.
Answer
491.4k+ views
Hint: For a hyperbola, $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$. The equation of the normal at the point $A\left( {{x}_{1}},{{y}_{1}} \right)$ on it is $\dfrac{{{a}^{2}}x}{{{x}_{1}}}+\dfrac{{{b}^{2}}y}{{{y}_{1}}}={{a}^{2}}+{{b}^{2}}$. We need to write the equation of normal at P as well as at Q on the given hyperbola. Then, we have to solve these two equations simultaneously to get the point of intersection.
Complete step by step answer:
Standard equation of a hyperbola is –
$\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$……………………. (1)
We have given the equation of hyperbola is –
$\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1$…………………………. (2)
Comparing, the given equation of hyperbola with the standard equation of hyperbola:-
On comparing the coefficients of ${{x}^{2}}$ and ${{y}^{2}}$ in both equations (1) and (2), we get
${{a}^{2}}=9$.
Taking positive square root,
$a=3$.
And, ${{b}^{2}}=4$.
Taking positive square root,
$b=2$.
Now, the equation of normal at point P is –
Putting, ${{x}_{1}}=3\sec \theta $, ${{y}_{1}}=2\tan \theta $(in the equation of normal provided in the hint.)
We get,
$\dfrac{{{a}^{2}}x}{3\sec \theta }+\dfrac{{{b}^{2}}y}{2\tan \theta }={{a}^{2}}+{{b}^{2}}$.
Putting $a=3$and $b=2$ in the above equation
$\Rightarrow \dfrac{9x}{3\sec \theta }+\dfrac{4y}{2\tan \theta }=13$.
Since, $\cos \theta =\dfrac{1}{\sec \theta }$.
And $\cot \theta =\dfrac{1}{\tan \theta }$ .
The above equation can be written as –
$\Rightarrow 3x\left( \dfrac{1}{\sec \theta } \right)+2y\left( \dfrac{1}{\tan \theta } \right)=13$.
$\Rightarrow 3x\left( \cos \theta \right)+2y\left( \cot \theta \right)=13$.
$\Rightarrow 3\cos \theta .x+2\cot \theta .y=13$…………………… (3)
The equation of normal at point Q is –
Putting, ${{x}_{1}}=3\sec \phi $, ${{y}_{1}}=2\tan \phi $ (in the equation of normal provided in the hint.)
We get,
$\dfrac{{{a}^{2}}x}{3\sec \phi }+\dfrac{{{b}^{2}}y}{2\tan \phi }=1$.
Putting $a=3$and $b=2$ in the above equation
$\Rightarrow \dfrac{9x}{3\sec \phi }+\dfrac{4y}{2\tan \phi }=1$.
$\Rightarrow 3x\left( \dfrac{1}{\sec \phi } \right)+2y\left( \dfrac{1}{\tan \phi } \right)=1$.
We know that, $\dfrac{1}{\sec \phi }=\cos \phi $.
And $\dfrac{1}{\tan \phi }=\cot \phi $.
The above equation can be written as –
$\Rightarrow 3x\left( \cos \phi \right)+2y\left( \cot \phi \right)=1$.
$\Rightarrow 3\cos \phi .x+2\cot \phi .y=1$
Now, it is given in the equation, $\theta +\phi =\dfrac{\pi }{2}$
$\therefore \phi =\dfrac{\pi }{2}-\theta $.
Now, replacing $\phi $ by $\dfrac{\pi }{2}-\theta $ , we get –
$\Rightarrow 3\cos \left( \dfrac{\pi }{2}-\theta \right)x+2\cot \left( \dfrac{\pi }{2}-\theta \right)y=13$.
$\Rightarrow 3\left( \sin \theta \right)x+2\left( \tan \theta \right)y=13$.
$\Rightarrow 3\sin \theta .x+2\tan \theta .y=13$…………………. (4)
Now, we have to solve equation (3) and (4) simultaneously to get the value of ordinate (i.e. y coordinate) from equation (3), we can write
$\Rightarrow 3\cos \theta .x=13-2\cot \theta .y$.
$\Rightarrow x=\dfrac{13-12\cot \theta y}{3\cos \theta }$………………. (5)
From equation (4) we can write
$\Rightarrow 3\sin \theta x=13-2\tan \theta y$.
$\Rightarrow x=\dfrac{13-2\tan \theta y}{3\sin \theta }$…………………………. (6)
Equation (5) and (6) –
$\Rightarrow \dfrac{13-2y\tan \theta }{3\sin \theta }=\dfrac{13-2y\cot \theta }{3\sin \theta }$.
$\Rightarrow 13-2y\tan \theta =13\tan \theta -2y$.
$\Rightarrow 2y-2y\tan \theta =13\tan \theta -13$.
$\Rightarrow 2y\left( 1-\tan \theta \right)=13\left( \tan \theta -1 \right)$.
$\Rightarrow 2y=-13$.
$\Rightarrow y=-\dfrac{13}{2}$.
Hence, the ordinate (y-coordinate) is equal to $-\dfrac{13}{2}$.
Note:
In this question, the equation of normal in point form on the hyperbola is used. Students can make mistakes by taking ${{a}^{2}}$ as 4 and ${{b}^{2}}$ as 9 here. Be careful, while taking values of ${{a}^{2}}$ and ${{b}^{2}}$. Note that the \[~\left( {{a}^{2}} \right)\] always goes with the positive of ${{x}^{2}}$ or ${{y}^{2}}$ .
In the given equation, $\dfrac{+{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1$.
Here, ${{x}^{2}}$is with a positive sign, hence it will give ${{a}^{2}}$ as 9.
Complete step by step answer:
Standard equation of a hyperbola is –
$\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$……………………. (1)
We have given the equation of hyperbola is –
$\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1$…………………………. (2)

Comparing, the given equation of hyperbola with the standard equation of hyperbola:-
On comparing the coefficients of ${{x}^{2}}$ and ${{y}^{2}}$ in both equations (1) and (2), we get
${{a}^{2}}=9$.
Taking positive square root,
$a=3$.
And, ${{b}^{2}}=4$.
Taking positive square root,
$b=2$.
Now, the equation of normal at point P is –
Putting, ${{x}_{1}}=3\sec \theta $, ${{y}_{1}}=2\tan \theta $(in the equation of normal provided in the hint.)
We get,
$\dfrac{{{a}^{2}}x}{3\sec \theta }+\dfrac{{{b}^{2}}y}{2\tan \theta }={{a}^{2}}+{{b}^{2}}$.
Putting $a=3$and $b=2$ in the above equation
$\Rightarrow \dfrac{9x}{3\sec \theta }+\dfrac{4y}{2\tan \theta }=13$.
Since, $\cos \theta =\dfrac{1}{\sec \theta }$.
And $\cot \theta =\dfrac{1}{\tan \theta }$ .
The above equation can be written as –
$\Rightarrow 3x\left( \dfrac{1}{\sec \theta } \right)+2y\left( \dfrac{1}{\tan \theta } \right)=13$.
$\Rightarrow 3x\left( \cos \theta \right)+2y\left( \cot \theta \right)=13$.
$\Rightarrow 3\cos \theta .x+2\cot \theta .y=13$…………………… (3)
The equation of normal at point Q is –
Putting, ${{x}_{1}}=3\sec \phi $, ${{y}_{1}}=2\tan \phi $ (in the equation of normal provided in the hint.)
We get,
$\dfrac{{{a}^{2}}x}{3\sec \phi }+\dfrac{{{b}^{2}}y}{2\tan \phi }=1$.
Putting $a=3$and $b=2$ in the above equation
$\Rightarrow \dfrac{9x}{3\sec \phi }+\dfrac{4y}{2\tan \phi }=1$.
$\Rightarrow 3x\left( \dfrac{1}{\sec \phi } \right)+2y\left( \dfrac{1}{\tan \phi } \right)=1$.
We know that, $\dfrac{1}{\sec \phi }=\cos \phi $.
And $\dfrac{1}{\tan \phi }=\cot \phi $.
The above equation can be written as –
$\Rightarrow 3x\left( \cos \phi \right)+2y\left( \cot \phi \right)=1$.
$\Rightarrow 3\cos \phi .x+2\cot \phi .y=1$
Now, it is given in the equation, $\theta +\phi =\dfrac{\pi }{2}$
$\therefore \phi =\dfrac{\pi }{2}-\theta $.
Now, replacing $\phi $ by $\dfrac{\pi }{2}-\theta $ , we get –
$\Rightarrow 3\cos \left( \dfrac{\pi }{2}-\theta \right)x+2\cot \left( \dfrac{\pi }{2}-\theta \right)y=13$.
$\Rightarrow 3\left( \sin \theta \right)x+2\left( \tan \theta \right)y=13$.
$\Rightarrow 3\sin \theta .x+2\tan \theta .y=13$…………………. (4)
Now, we have to solve equation (3) and (4) simultaneously to get the value of ordinate (i.e. y coordinate) from equation (3), we can write
$\Rightarrow 3\cos \theta .x=13-2\cot \theta .y$.
$\Rightarrow x=\dfrac{13-12\cot \theta y}{3\cos \theta }$………………. (5)
From equation (4) we can write
$\Rightarrow 3\sin \theta x=13-2\tan \theta y$.
$\Rightarrow x=\dfrac{13-2\tan \theta y}{3\sin \theta }$…………………………. (6)
Equation (5) and (6) –
$\Rightarrow \dfrac{13-2y\tan \theta }{3\sin \theta }=\dfrac{13-2y\cot \theta }{3\sin \theta }$.
$\Rightarrow 13-2y\tan \theta =13\tan \theta -2y$.
$\Rightarrow 2y-2y\tan \theta =13\tan \theta -13$.
$\Rightarrow 2y\left( 1-\tan \theta \right)=13\left( \tan \theta -1 \right)$.
$\Rightarrow 2y=-13$.
$\Rightarrow y=-\dfrac{13}{2}$.
Hence, the ordinate (y-coordinate) is equal to $-\dfrac{13}{2}$.
Note:
In this question, the equation of normal in point form on the hyperbola is used. Students can make mistakes by taking ${{a}^{2}}$ as 4 and ${{b}^{2}}$ as 9 here. Be careful, while taking values of ${{a}^{2}}$ and ${{b}^{2}}$. Note that the \[~\left( {{a}^{2}} \right)\] always goes with the positive of ${{x}^{2}}$ or ${{y}^{2}}$ .
In the given equation, $\dfrac{+{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1$.
Here, ${{x}^{2}}$is with a positive sign, hence it will give ${{a}^{2}}$ as 9.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
