
Let $P=\left( 1,0,-1 \right)$, $Q=\left( -1,2,0 \right)$, $R=\left( 2,0,-3 \right)$and $S=\left( 3,-2,-1 \right)$. Then the length of the components of RS on PQ is?
Answer
554.1k+ views
Hint: If P, Q, R, and S are four vector point then the component RS on PQ is $\left| \dfrac{\overrightarrow{RS}.\overrightarrow{PQ}}{\left| \overrightarrow{PQ} \right|} \right|$.
The vector from one fixed point to another point is called the position vector.
The magnitude is the distance from the starting point to the endpoint of the vector is represented by $''\left| {} \right|''$.
The vector projection P on Q is the length of segment PQ.
Let’s the starting point in P and the endpoint Q then the magnitude of PQ will be
$\Rightarrow \left| \overrightarrow{PQ} \right|=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}+{{\left( {{z}_{1}}-{{z}_{2}} \right)}^{2}}}$
Complete step by step solution:
The vector points are $P=\left( 1,0,-1 \right)$, $Q=\left( -1,2,0 \right)$, $R=\left( 2,0,-3 \right)$and $S=\left( 3,-2,-1 \right)$.
The position vector $\overrightarrow{OP}$for a point $P=(1,0,-1)$is
$\Rightarrow \overrightarrow{OP}=1.\hat{i}+0.\hat{j}-1.\hat{k}$
$\Rightarrow \overrightarrow{OP}=\hat{i}-\hat{k}$
Similarly, the position vector for points Q, R, and S will be
$\Rightarrow \overrightarrow{OQ}=-\hat{i}+2\hat{j}$
$\Rightarrow \overrightarrow{OR}=2\hat{i}-3\hat{k}$
$\Rightarrow \overrightarrow{OS}=3\hat{i}-2\hat{j}-\hat{k}$
Where, O is the origin point $(0,0,0)$.
Now the component $\overrightarrow{PQ}$is equal to $\overrightarrow{OQ}-\overrightarrow{OP}$, therefore the component
\[\Rightarrow \overrightarrow{PQ}=\overrightarrow{OQ}-\overrightarrow{OP}\]
\[\Rightarrow \overrightarrow{PQ}=-\hat{i}+2\hat{j}-\left( \hat{i}-\hat{k} \right)=-2\hat{i}+2\hat{j}+\hat{k}\]
$\Rightarrow \overrightarrow{PQ}=-2\hat{i}+2\hat{j}+\hat{k}$
Similarly, the component $\overrightarrow{RS}$is
$\Rightarrow \overrightarrow{RS}=\overrightarrow{OS}-\overrightarrow{OR}=\hat{i}-2\hat{j}+2\hat{k}$
$\Rightarrow \overrightarrow{RS}=\hat{i}-2\hat{j}+2\hat{k}$
Thus, the length of the components $\overrightarrow{RS}$on $\overrightarrow{PQ}$$=\left| \dfrac{\overrightarrow{PQ}.\overrightarrow{RS}}{\left| \overrightarrow{PQ} \right|} \right|$
The magnitude of $\left| \overrightarrow{PQ} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
\[\Rightarrow \left| \overrightarrow{PQ} \right|=\sqrt{{{(-2)}^{2}}+{{2}^{2}}+{{1}^{2}}}\]
$\Rightarrow \left| \overrightarrow{PQ} \right|=\sqrt{4+4+1}=\sqrt{9}$
$\Rightarrow \left| \overrightarrow{PQ} \right|=3$
So, c $\overrightarrow{PQ}=\left| \dfrac{\left( \hat{i}-2\hat{j}+2\hat{k} \right).\left( -2\hat{i}+2\hat{j}+\hat{k} \right)}{3} \right|$
$\Rightarrow \left| \dfrac{-2-4+2}{3} \right|=\left| \dfrac{-4}{3} \right|$
The components $\overrightarrow{RS}$on $\overrightarrow{PQ}=\left| \dfrac{-4}{3} \right|=\dfrac{4}{3}$
Hence, the components $\overrightarrow{RS}$ on $\overrightarrow{PQ}$is $\dfrac{4}{3}$.
Note:
P and Q or two vector quantities then the dot product of both vector quantity will be scalar.
It is denoted by $'(.)'$the symbol dot. For example, P and Q are two vectors then the dot product will be
$\Rightarrow \overrightarrow{P}.\overrightarrow{Q}=\left| \overrightarrow{P} \right|\left| \overrightarrow{Q} \right|\cos \theta $where $\theta $ is the angle between two vectors P and Q.
The vector from one fixed point to another point is called the position vector.
The magnitude is the distance from the starting point to the endpoint of the vector is represented by $''\left| {} \right|''$.
The vector projection P on Q is the length of segment PQ.
Let’s the starting point in P and the endpoint Q then the magnitude of PQ will be
$\Rightarrow \left| \overrightarrow{PQ} \right|=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}+{{\left( {{z}_{1}}-{{z}_{2}} \right)}^{2}}}$
Complete step by step solution:
The vector points are $P=\left( 1,0,-1 \right)$, $Q=\left( -1,2,0 \right)$, $R=\left( 2,0,-3 \right)$and $S=\left( 3,-2,-1 \right)$.
The position vector $\overrightarrow{OP}$for a point $P=(1,0,-1)$is
$\Rightarrow \overrightarrow{OP}=1.\hat{i}+0.\hat{j}-1.\hat{k}$
$\Rightarrow \overrightarrow{OP}=\hat{i}-\hat{k}$
Similarly, the position vector for points Q, R, and S will be
$\Rightarrow \overrightarrow{OQ}=-\hat{i}+2\hat{j}$
$\Rightarrow \overrightarrow{OR}=2\hat{i}-3\hat{k}$
$\Rightarrow \overrightarrow{OS}=3\hat{i}-2\hat{j}-\hat{k}$
Where, O is the origin point $(0,0,0)$.
Now the component $\overrightarrow{PQ}$is equal to $\overrightarrow{OQ}-\overrightarrow{OP}$, therefore the component
\[\Rightarrow \overrightarrow{PQ}=\overrightarrow{OQ}-\overrightarrow{OP}\]
\[\Rightarrow \overrightarrow{PQ}=-\hat{i}+2\hat{j}-\left( \hat{i}-\hat{k} \right)=-2\hat{i}+2\hat{j}+\hat{k}\]
$\Rightarrow \overrightarrow{PQ}=-2\hat{i}+2\hat{j}+\hat{k}$
Similarly, the component $\overrightarrow{RS}$is
$\Rightarrow \overrightarrow{RS}=\overrightarrow{OS}-\overrightarrow{OR}=\hat{i}-2\hat{j}+2\hat{k}$
$\Rightarrow \overrightarrow{RS}=\hat{i}-2\hat{j}+2\hat{k}$
Thus, the length of the components $\overrightarrow{RS}$on $\overrightarrow{PQ}$$=\left| \dfrac{\overrightarrow{PQ}.\overrightarrow{RS}}{\left| \overrightarrow{PQ} \right|} \right|$
The magnitude of $\left| \overrightarrow{PQ} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
\[\Rightarrow \left| \overrightarrow{PQ} \right|=\sqrt{{{(-2)}^{2}}+{{2}^{2}}+{{1}^{2}}}\]
$\Rightarrow \left| \overrightarrow{PQ} \right|=\sqrt{4+4+1}=\sqrt{9}$
$\Rightarrow \left| \overrightarrow{PQ} \right|=3$
So, c $\overrightarrow{PQ}=\left| \dfrac{\left( \hat{i}-2\hat{j}+2\hat{k} \right).\left( -2\hat{i}+2\hat{j}+\hat{k} \right)}{3} \right|$
$\Rightarrow \left| \dfrac{-2-4+2}{3} \right|=\left| \dfrac{-4}{3} \right|$
The components $\overrightarrow{RS}$on $\overrightarrow{PQ}=\left| \dfrac{-4}{3} \right|=\dfrac{4}{3}$
Hence, the components $\overrightarrow{RS}$ on $\overrightarrow{PQ}$is $\dfrac{4}{3}$.
Note:
P and Q or two vector quantities then the dot product of both vector quantity will be scalar.
It is denoted by $'(.)'$the symbol dot. For example, P and Q are two vectors then the dot product will be
$\Rightarrow \overrightarrow{P}.\overrightarrow{Q}=\left| \overrightarrow{P} \right|\left| \overrightarrow{Q} \right|\cos \theta $where $\theta $ is the angle between two vectors P and Q.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

