
Let $P$ be a matrix of order $3\times 3$ such that all the entries in $P$ are from the set $\left\{ -1,0,1 \right\}$. Then the maximum possible value of the determinant of $P$ is ______.
Answer
480.9k+ views
Hint: Expand the determinant by taking symbolical entries. Separate the positive and negative entries. Proceed with trial and error method for different maximum values of the determinant. \[\]
Complete step-by-step answer:
Let us assume the matrix $P$ has entries as follows \[P=\left[ \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right]\]. As given in the body of solution all the entries in $P$ are taken from the set $\left\{ -1,0,1 \right\}$. Now we shall denote the determinant value of $P$ as $\Delta \left( P \right)$ and calculate $\Delta \left( P \right)$ by expansion from the first row,
\[\Delta \left( P \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|={{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}} \right)-{{a}_{2}}\left( {{b}_{1}}{{c}_{3}}-{{b}_{3}}{{c}_{1}} \right)+{{a}_{3}}\left( {{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}} \right)\]
We shall separate the positive and negative terms in the expression,
\[\Delta \left( P \right)=\left( {{a}_{1}}{{b}_{2}}{{c}_{3}}+{{a}_{2}}{{b}_{3}}{{c}_{1}}+{{a}_{3}}{{b}_{1}}{{c}_{2}} \right)-\left( {{a}_{1}}{{b}_{3}}{{c}_{2}}+{{a}_{2}}{{b}_{1}}{{c}_{3}}+{{a}_{3}}{{b}_{2}}{{c}_{1}} \right)={{D}_{1}}-{{D}_{2}}\text{ }\left( \text{say} \right)\]
We observe that if all the entries are taken from the set $\left\{ -1,0,1 \right\}$then the maximum value of any term inside ${{D}_{1}}$ or ${{D}_{2}}$ is 1.
Case-1: The value of the determinant will be maximum if ${{D}_{1}}$ is maximum at the value 3 and ${{D}_{2}}$ is minimum at the value -3 , so that $\Delta \left( P \right)={{D}_{1}}-{{D}_{2}}=6$. In symbols,
\[\begin{align}
& {{D}_{1}}=3 \\
& \Rightarrow {{a}_{1}}{{b}_{2}}{{c}_{3}}+{{a}_{2}}{{b}_{3}}{{c}_{1}}+{{a}_{3}}{{b}_{1}}{{c}_{2}}=3 \\
& \Rightarrow {{a}_{1}}{{b}_{2}}{{c}_{3}}=1,{{a}_{2}}{{b}_{3}}{{c}_{1}}=1,{{a}_{3}}{{b}_{1}}{{c}_{2}}=1 \\
\end{align}\]
Similarly,
\[\begin{align}
& {{D}_{2}}=-3 \\
& \Rightarrow {{a}_{1}}{{b}_{3}}{{c}_{2}}+{{a}_{2}}{{b}_{1}}{{c}_{3}}+{{a}_{3}}{{b}_{2}}{{c}_{1}}=-3 \\
& \Rightarrow {{a}_{1}}{{b}_{3}}{{c}_{2}}=-1,{{a}_{2}}{{b}_{1}}{{c}_{3}}=-1,{{a}_{3}}{{b}_{2}}{{c}_{1}}=-1 \\
\end{align}\]
We can observe that the values of the terms inside ${{D}_{1}}$ and ${{D}_{2}}$ cannot occur at the same time. In other words to assign ${{D}_{1}}=3$ if we take ${{a}_{1}}={{b}_{2}}={{c}_{3}}={{a}_{2}}={{b}_{3}}={{c}_{1}}={{a}_{3}}={{b}_{1}}={{c}_{2}}=1 $ then putting the same in ${{D}_{2}}$ we cannot get to $-3$. So we reject the possibility of $\Delta \left( P \right)$ being 6.\[\]
Case-2: The next possible maximum value of $\Delta \left( P \right)$ is 4 where at least two terms from ${{D}_{1}}$ and ${{D}_{2}}$ vanishes. We take an example to demonstrate one such possibility we take ${{a}_{1}}={{b}_{2}}={{c}_{3}}={{a}_{2}}={{b}_{3}}={{c}_{1}}={{a}_{3}}=1,{{b}_{1}}={{c}_{2}}=-1$ where two terms from ${{D}_{2}}$ vanishes. Here,
\[\Delta \left( P \right)=\left| \begin{matrix}
1 & 1 & 1 \\
-1 & 1 & 1 \\
1 & -1 & 1 \\
\end{matrix} \right|=4\]
We can also find out also such other possibilities $ \Delta \left( P \right) $ being 4. So the maximum possible value of the determinant of $P$ is 4.\[\]
Note: We note that we can find the determinant value of a matrix when the matrix is a square matrix. We also note that the determinant of the inverse of matrix $A$ is reciprocal of determinant of $A$ which means $\Delta \left( {{A}^{-1}} \right)={{\Delta }^{-1}}\left( A \right)$.
Complete step-by-step answer:
Let us assume the matrix $P$ has entries as follows \[P=\left[ \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right]\]. As given in the body of solution all the entries in $P$ are taken from the set $\left\{ -1,0,1 \right\}$. Now we shall denote the determinant value of $P$ as $\Delta \left( P \right)$ and calculate $\Delta \left( P \right)$ by expansion from the first row,
\[\Delta \left( P \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|={{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}} \right)-{{a}_{2}}\left( {{b}_{1}}{{c}_{3}}-{{b}_{3}}{{c}_{1}} \right)+{{a}_{3}}\left( {{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}} \right)\]
We shall separate the positive and negative terms in the expression,
\[\Delta \left( P \right)=\left( {{a}_{1}}{{b}_{2}}{{c}_{3}}+{{a}_{2}}{{b}_{3}}{{c}_{1}}+{{a}_{3}}{{b}_{1}}{{c}_{2}} \right)-\left( {{a}_{1}}{{b}_{3}}{{c}_{2}}+{{a}_{2}}{{b}_{1}}{{c}_{3}}+{{a}_{3}}{{b}_{2}}{{c}_{1}} \right)={{D}_{1}}-{{D}_{2}}\text{ }\left( \text{say} \right)\]
We observe that if all the entries are taken from the set $\left\{ -1,0,1 \right\}$then the maximum value of any term inside ${{D}_{1}}$ or ${{D}_{2}}$ is 1.
Case-1: The value of the determinant will be maximum if ${{D}_{1}}$ is maximum at the value 3 and ${{D}_{2}}$ is minimum at the value -3 , so that $\Delta \left( P \right)={{D}_{1}}-{{D}_{2}}=6$. In symbols,
\[\begin{align}
& {{D}_{1}}=3 \\
& \Rightarrow {{a}_{1}}{{b}_{2}}{{c}_{3}}+{{a}_{2}}{{b}_{3}}{{c}_{1}}+{{a}_{3}}{{b}_{1}}{{c}_{2}}=3 \\
& \Rightarrow {{a}_{1}}{{b}_{2}}{{c}_{3}}=1,{{a}_{2}}{{b}_{3}}{{c}_{1}}=1,{{a}_{3}}{{b}_{1}}{{c}_{2}}=1 \\
\end{align}\]
Similarly,
\[\begin{align}
& {{D}_{2}}=-3 \\
& \Rightarrow {{a}_{1}}{{b}_{3}}{{c}_{2}}+{{a}_{2}}{{b}_{1}}{{c}_{3}}+{{a}_{3}}{{b}_{2}}{{c}_{1}}=-3 \\
& \Rightarrow {{a}_{1}}{{b}_{3}}{{c}_{2}}=-1,{{a}_{2}}{{b}_{1}}{{c}_{3}}=-1,{{a}_{3}}{{b}_{2}}{{c}_{1}}=-1 \\
\end{align}\]
We can observe that the values of the terms inside ${{D}_{1}}$ and ${{D}_{2}}$ cannot occur at the same time. In other words to assign ${{D}_{1}}=3$ if we take ${{a}_{1}}={{b}_{2}}={{c}_{3}}={{a}_{2}}={{b}_{3}}={{c}_{1}}={{a}_{3}}={{b}_{1}}={{c}_{2}}=1 $ then putting the same in ${{D}_{2}}$ we cannot get to $-3$. So we reject the possibility of $\Delta \left( P \right)$ being 6.\[\]
Case-2: The next possible maximum value of $\Delta \left( P \right)$ is 4 where at least two terms from ${{D}_{1}}$ and ${{D}_{2}}$ vanishes. We take an example to demonstrate one such possibility we take ${{a}_{1}}={{b}_{2}}={{c}_{3}}={{a}_{2}}={{b}_{3}}={{c}_{1}}={{a}_{3}}=1,{{b}_{1}}={{c}_{2}}=-1$ where two terms from ${{D}_{2}}$ vanishes. Here,
\[\Delta \left( P \right)=\left| \begin{matrix}
1 & 1 & 1 \\
-1 & 1 & 1 \\
1 & -1 & 1 \\
\end{matrix} \right|=4\]
We can also find out also such other possibilities $ \Delta \left( P \right) $ being 4. So the maximum possible value of the determinant of $P$ is 4.\[\]
Note: We note that we can find the determinant value of a matrix when the matrix is a square matrix. We also note that the determinant of the inverse of matrix $A$ is reciprocal of determinant of $A$ which means $\Delta \left( {{A}^{-1}} \right)={{\Delta }^{-1}}\left( A \right)$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
