
Let $P$ be a matrix of order $3\times 3$ such that all the entries in $P$ are from the set $\left\{ -1,0,1 \right\}$. Then the maximum possible value of the determinant of $P$ is ______.
Answer
579.6k+ views
Hint: Expand the determinant by taking symbolical entries. Separate the positive and negative entries. Proceed with trial and error method for different maximum values of the determinant. \[\]
Complete step-by-step answer:
Let us assume the matrix $P$ has entries as follows \[P=\left[ \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right]\]. As given in the body of solution all the entries in $P$ are taken from the set $\left\{ -1,0,1 \right\}$. Now we shall denote the determinant value of $P$ as $\Delta \left( P \right)$ and calculate $\Delta \left( P \right)$ by expansion from the first row,
\[\Delta \left( P \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|={{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}} \right)-{{a}_{2}}\left( {{b}_{1}}{{c}_{3}}-{{b}_{3}}{{c}_{1}} \right)+{{a}_{3}}\left( {{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}} \right)\]
We shall separate the positive and negative terms in the expression,
\[\Delta \left( P \right)=\left( {{a}_{1}}{{b}_{2}}{{c}_{3}}+{{a}_{2}}{{b}_{3}}{{c}_{1}}+{{a}_{3}}{{b}_{1}}{{c}_{2}} \right)-\left( {{a}_{1}}{{b}_{3}}{{c}_{2}}+{{a}_{2}}{{b}_{1}}{{c}_{3}}+{{a}_{3}}{{b}_{2}}{{c}_{1}} \right)={{D}_{1}}-{{D}_{2}}\text{ }\left( \text{say} \right)\]
We observe that if all the entries are taken from the set $\left\{ -1,0,1 \right\}$then the maximum value of any term inside ${{D}_{1}}$ or ${{D}_{2}}$ is 1.
Case-1: The value of the determinant will be maximum if ${{D}_{1}}$ is maximum at the value 3 and ${{D}_{2}}$ is minimum at the value -3 , so that $\Delta \left( P \right)={{D}_{1}}-{{D}_{2}}=6$. In symbols,
\[\begin{align}
& {{D}_{1}}=3 \\
& \Rightarrow {{a}_{1}}{{b}_{2}}{{c}_{3}}+{{a}_{2}}{{b}_{3}}{{c}_{1}}+{{a}_{3}}{{b}_{1}}{{c}_{2}}=3 \\
& \Rightarrow {{a}_{1}}{{b}_{2}}{{c}_{3}}=1,{{a}_{2}}{{b}_{3}}{{c}_{1}}=1,{{a}_{3}}{{b}_{1}}{{c}_{2}}=1 \\
\end{align}\]
Similarly,
\[\begin{align}
& {{D}_{2}}=-3 \\
& \Rightarrow {{a}_{1}}{{b}_{3}}{{c}_{2}}+{{a}_{2}}{{b}_{1}}{{c}_{3}}+{{a}_{3}}{{b}_{2}}{{c}_{1}}=-3 \\
& \Rightarrow {{a}_{1}}{{b}_{3}}{{c}_{2}}=-1,{{a}_{2}}{{b}_{1}}{{c}_{3}}=-1,{{a}_{3}}{{b}_{2}}{{c}_{1}}=-1 \\
\end{align}\]
We can observe that the values of the terms inside ${{D}_{1}}$ and ${{D}_{2}}$ cannot occur at the same time. In other words to assign ${{D}_{1}}=3$ if we take ${{a}_{1}}={{b}_{2}}={{c}_{3}}={{a}_{2}}={{b}_{3}}={{c}_{1}}={{a}_{3}}={{b}_{1}}={{c}_{2}}=1 $ then putting the same in ${{D}_{2}}$ we cannot get to $-3$. So we reject the possibility of $\Delta \left( P \right)$ being 6.\[\]
Case-2: The next possible maximum value of $\Delta \left( P \right)$ is 4 where at least two terms from ${{D}_{1}}$ and ${{D}_{2}}$ vanishes. We take an example to demonstrate one such possibility we take ${{a}_{1}}={{b}_{2}}={{c}_{3}}={{a}_{2}}={{b}_{3}}={{c}_{1}}={{a}_{3}}=1,{{b}_{1}}={{c}_{2}}=-1$ where two terms from ${{D}_{2}}$ vanishes. Here,
\[\Delta \left( P \right)=\left| \begin{matrix}
1 & 1 & 1 \\
-1 & 1 & 1 \\
1 & -1 & 1 \\
\end{matrix} \right|=4\]
We can also find out also such other possibilities $ \Delta \left( P \right) $ being 4. So the maximum possible value of the determinant of $P$ is 4.\[\]
Note: We note that we can find the determinant value of a matrix when the matrix is a square matrix. We also note that the determinant of the inverse of matrix $A$ is reciprocal of determinant of $A$ which means $\Delta \left( {{A}^{-1}} \right)={{\Delta }^{-1}}\left( A \right)$.
Complete step-by-step answer:
Let us assume the matrix $P$ has entries as follows \[P=\left[ \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right]\]. As given in the body of solution all the entries in $P$ are taken from the set $\left\{ -1,0,1 \right\}$. Now we shall denote the determinant value of $P$ as $\Delta \left( P \right)$ and calculate $\Delta \left( P \right)$ by expansion from the first row,
\[\Delta \left( P \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|={{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}} \right)-{{a}_{2}}\left( {{b}_{1}}{{c}_{3}}-{{b}_{3}}{{c}_{1}} \right)+{{a}_{3}}\left( {{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}} \right)\]
We shall separate the positive and negative terms in the expression,
\[\Delta \left( P \right)=\left( {{a}_{1}}{{b}_{2}}{{c}_{3}}+{{a}_{2}}{{b}_{3}}{{c}_{1}}+{{a}_{3}}{{b}_{1}}{{c}_{2}} \right)-\left( {{a}_{1}}{{b}_{3}}{{c}_{2}}+{{a}_{2}}{{b}_{1}}{{c}_{3}}+{{a}_{3}}{{b}_{2}}{{c}_{1}} \right)={{D}_{1}}-{{D}_{2}}\text{ }\left( \text{say} \right)\]
We observe that if all the entries are taken from the set $\left\{ -1,0,1 \right\}$then the maximum value of any term inside ${{D}_{1}}$ or ${{D}_{2}}$ is 1.
Case-1: The value of the determinant will be maximum if ${{D}_{1}}$ is maximum at the value 3 and ${{D}_{2}}$ is minimum at the value -3 , so that $\Delta \left( P \right)={{D}_{1}}-{{D}_{2}}=6$. In symbols,
\[\begin{align}
& {{D}_{1}}=3 \\
& \Rightarrow {{a}_{1}}{{b}_{2}}{{c}_{3}}+{{a}_{2}}{{b}_{3}}{{c}_{1}}+{{a}_{3}}{{b}_{1}}{{c}_{2}}=3 \\
& \Rightarrow {{a}_{1}}{{b}_{2}}{{c}_{3}}=1,{{a}_{2}}{{b}_{3}}{{c}_{1}}=1,{{a}_{3}}{{b}_{1}}{{c}_{2}}=1 \\
\end{align}\]
Similarly,
\[\begin{align}
& {{D}_{2}}=-3 \\
& \Rightarrow {{a}_{1}}{{b}_{3}}{{c}_{2}}+{{a}_{2}}{{b}_{1}}{{c}_{3}}+{{a}_{3}}{{b}_{2}}{{c}_{1}}=-3 \\
& \Rightarrow {{a}_{1}}{{b}_{3}}{{c}_{2}}=-1,{{a}_{2}}{{b}_{1}}{{c}_{3}}=-1,{{a}_{3}}{{b}_{2}}{{c}_{1}}=-1 \\
\end{align}\]
We can observe that the values of the terms inside ${{D}_{1}}$ and ${{D}_{2}}$ cannot occur at the same time. In other words to assign ${{D}_{1}}=3$ if we take ${{a}_{1}}={{b}_{2}}={{c}_{3}}={{a}_{2}}={{b}_{3}}={{c}_{1}}={{a}_{3}}={{b}_{1}}={{c}_{2}}=1 $ then putting the same in ${{D}_{2}}$ we cannot get to $-3$. So we reject the possibility of $\Delta \left( P \right)$ being 6.\[\]
Case-2: The next possible maximum value of $\Delta \left( P \right)$ is 4 where at least two terms from ${{D}_{1}}$ and ${{D}_{2}}$ vanishes. We take an example to demonstrate one such possibility we take ${{a}_{1}}={{b}_{2}}={{c}_{3}}={{a}_{2}}={{b}_{3}}={{c}_{1}}={{a}_{3}}=1,{{b}_{1}}={{c}_{2}}=-1$ where two terms from ${{D}_{2}}$ vanishes. Here,
\[\Delta \left( P \right)=\left| \begin{matrix}
1 & 1 & 1 \\
-1 & 1 & 1 \\
1 & -1 & 1 \\
\end{matrix} \right|=4\]
We can also find out also such other possibilities $ \Delta \left( P \right) $ being 4. So the maximum possible value of the determinant of $P$ is 4.\[\]
Note: We note that we can find the determinant value of a matrix when the matrix is a square matrix. We also note that the determinant of the inverse of matrix $A$ is reciprocal of determinant of $A$ which means $\Delta \left( {{A}^{-1}} \right)={{\Delta }^{-1}}\left( A \right)$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

