
Let $\overrightarrow a = \widehat i + \widehat j + \widehat k$ , $\overrightarrow c = \widehat j - \widehat k$ and a vector $\overrightarrow b $ be such that $\overrightarrow a \times \overrightarrow b = \overrightarrow c $ and $\overrightarrow a \cdot \overrightarrow b = 3$ . Then $|\overrightarrow b |$ equals:
A) $\sqrt {\dfrac{{11}}{3}} $
B) $\dfrac{{\sqrt {11} }}{3}$
C) $\dfrac{{11}}{{\sqrt 3 }}$
D) $\dfrac{{11}}{3}$
Answer
587.1k+ views
Hint:Assume the general expression for the vector $\overrightarrow b $ . The cross product of two vectors is a vector. Using this fact compare the vectors. Use the formula for modulus of a vector to find the final answer.
Complete step-by-step answer:
The data given in the problem is,
$\overrightarrow a \cdot \overrightarrow b = 3$.
$\overrightarrow a = \widehat i + \widehat j + \widehat k$
$\overrightarrow c = \widehat j - \widehat k$
Assume that the vector $\overrightarrow b $ is given by $\overrightarrow b = x\widehat i + y\widehat j + z\widehat k$.
It is given that the dot product $\overrightarrow a \cdot \overrightarrow b = 3$.
By using the formula for dot product, we can write the following:
$(\widehat i + \widehat j + \widehat k) \cdot (x\widehat i + y\widehat j + c\widehat k) = 3$
Therefore, simplifying the dot product we get,
$x + y + z = 3$
Now it is given that $\overrightarrow a \times \overrightarrow b = \overrightarrow c $ .
Therefore, using the formula for cross product we write:
$\left| {\begin{array}{*{20}{c}}
{\widehat i}&{\widehat j}&{\widehat k} \\
1&1&1 \\
x&y&z
\end{array}} \right| = \widehat j - \widehat k$
Simplify the determinant,
$\widehat i\left( {z - y} \right) - \widehat j\left( {z - x} \right) + \widehat k\left( {y - x} \right) = \widehat j - \widehat k$
Comparing Left-hand side and right-hand side.
$z - y = 0$
This implies that $z = y$ .
Similarly,
$ - \left( {z - x} \right) = 1$
Implies that $x - z = 1$ .
And
$y - x = - 1$
Since we know that $z = y$ and $x + y + z = 3$ therefore, $x + 2y = 3$.
Now $x + 2y = 3$ and $y - x = - 1$.
Solving these two equations simultaneously we get, $y = \dfrac{2}{3}$ and $x = \dfrac{5}{3}$.
Now substituting these values in$x + y + z = 3$ we get the following:
$\dfrac{5}{3} + \dfrac{2}{3} + z = 3$
Simplifying for z we get the following:
$z = 3 - \dfrac{7}{3}$
Therefore, $z = \dfrac{2}{3}$ .
Therefore, the vector $\overrightarrow b $ is $\overrightarrow b = \dfrac{5}{3}\widehat i + \dfrac{2}{3}\widehat j + \dfrac{2}{3}\widehat k$ .
Now we will take modulus of the above vector as follow:
$\left| {\overrightarrow b } \right| = \sqrt {{{\left( {\dfrac{5}{3}} \right)}^2} + {{\left( {\dfrac{2}{3}} \right)}^2} + {{\left( {\dfrac{2}{3}} \right)}^2}} $
Simplify the squares and then we get:
$\left| {\overrightarrow b } \right| = \sqrt {\dfrac{{33}}{9}} $
We can simplify the square root by dividing numerator and denominator by 3.
Therefore, the value of the modulus is $\left| {\overrightarrow b } \right| = \sqrt {\dfrac{{11}}{3}} $.
So, the correct answer is “Option A”.
Note:Here the important point to note is that the cross product is always vector. The modulus of the vector is always a scalar. We calculate the cross product and use it to find the component of the vector.
Complete step-by-step answer:
The data given in the problem is,
$\overrightarrow a \cdot \overrightarrow b = 3$.
$\overrightarrow a = \widehat i + \widehat j + \widehat k$
$\overrightarrow c = \widehat j - \widehat k$
Assume that the vector $\overrightarrow b $ is given by $\overrightarrow b = x\widehat i + y\widehat j + z\widehat k$.
It is given that the dot product $\overrightarrow a \cdot \overrightarrow b = 3$.
By using the formula for dot product, we can write the following:
$(\widehat i + \widehat j + \widehat k) \cdot (x\widehat i + y\widehat j + c\widehat k) = 3$
Therefore, simplifying the dot product we get,
$x + y + z = 3$
Now it is given that $\overrightarrow a \times \overrightarrow b = \overrightarrow c $ .
Therefore, using the formula for cross product we write:
$\left| {\begin{array}{*{20}{c}}
{\widehat i}&{\widehat j}&{\widehat k} \\
1&1&1 \\
x&y&z
\end{array}} \right| = \widehat j - \widehat k$
Simplify the determinant,
$\widehat i\left( {z - y} \right) - \widehat j\left( {z - x} \right) + \widehat k\left( {y - x} \right) = \widehat j - \widehat k$
Comparing Left-hand side and right-hand side.
$z - y = 0$
This implies that $z = y$ .
Similarly,
$ - \left( {z - x} \right) = 1$
Implies that $x - z = 1$ .
And
$y - x = - 1$
Since we know that $z = y$ and $x + y + z = 3$ therefore, $x + 2y = 3$.
Now $x + 2y = 3$ and $y - x = - 1$.
Solving these two equations simultaneously we get, $y = \dfrac{2}{3}$ and $x = \dfrac{5}{3}$.
Now substituting these values in$x + y + z = 3$ we get the following:
$\dfrac{5}{3} + \dfrac{2}{3} + z = 3$
Simplifying for z we get the following:
$z = 3 - \dfrac{7}{3}$
Therefore, $z = \dfrac{2}{3}$ .
Therefore, the vector $\overrightarrow b $ is $\overrightarrow b = \dfrac{5}{3}\widehat i + \dfrac{2}{3}\widehat j + \dfrac{2}{3}\widehat k$ .
Now we will take modulus of the above vector as follow:
$\left| {\overrightarrow b } \right| = \sqrt {{{\left( {\dfrac{5}{3}} \right)}^2} + {{\left( {\dfrac{2}{3}} \right)}^2} + {{\left( {\dfrac{2}{3}} \right)}^2}} $
Simplify the squares and then we get:
$\left| {\overrightarrow b } \right| = \sqrt {\dfrac{{33}}{9}} $
We can simplify the square root by dividing numerator and denominator by 3.
Therefore, the value of the modulus is $\left| {\overrightarrow b } \right| = \sqrt {\dfrac{{11}}{3}} $.
So, the correct answer is “Option A”.
Note:Here the important point to note is that the cross product is always vector. The modulus of the vector is always a scalar. We calculate the cross product and use it to find the component of the vector.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

