
Let $ \overrightarrow a = 2\widehat i + \widehat j - 2\widehat k $ and $ \overrightarrow b = \widehat i + \widehat {j.} $ Let $ \widehat c $ be a vector such that $ \left| {\overrightarrow c - \overrightarrow a } \right| = 3.\left| {(\overrightarrow a \times \overrightarrow {b)} \times \overrightarrow c } \right| = 3 $ and the angle between $ \overrightarrow c $ and $ \overrightarrow a \times \overrightarrow b $ be $ 30^\circ . $ Then $ \overrightarrow a \cdot \overrightarrow c $ is equal to.
A. $ \dfrac{{25}}{8} $
B. $ 2 $
C. $ 5 $
D. $ \dfrac{1}{8} $
Answer
503.7k+ views
Hint: Remember and apply perfectly the laws of dot product and cross product. Here we will use cross-product. It can be defined as the vector which is the binary operation on two vectors in three dimensions with the suspended sine angle between the two. First find the magnitude of the individual vectors and then the cross product and find the correlation from the given values and the required ones.
Complete step-by-step answer:
Given that - $ \overrightarrow a = 2\widehat i + \widehat j - 2\widehat k $
Take its magnitude.
$ \Rightarrow \left| a \right| = \sqrt {{{(2)}^2} + {{(1)}^2} + {{( - 2)}^2}} $
Simplify,
$
\Rightarrow \left| a \right| = \sqrt {4 + 1 + 4} \\
\Rightarrow \left| a \right| = \sqrt 9 \\
\Rightarrow \left| a \right| = 3 \;
$
Similarly, take magnitude for the vector, “b”
$ \overrightarrow b = \widehat i + \widehat {j.} $
$
\Rightarrow \left| b \right| = \sqrt {{{(1)}^2} + {{(1)}^2}} \\
\Rightarrow \left| b \right| = \sqrt 2 \;
$
Now, given that –
$ \left| {c - a} \right| = 3 $
Take square on both the sides of the equation –
$ {\left| {c - a} \right|^2} = {3^2} $
Simplify the above equation. Open the brackets by using the square of the difference formula.
$ \Rightarrow {\left| c \right|^2} + {\left| a \right|^2} - 2c.a = 9{\text{ }}.....{\text{(A)}} $
Also, given that –
$ \left| {(\overrightarrow a \times \overrightarrow {b)} \times \overrightarrow c } \right| = 3 $
Apply the property of the cross-product –
$ \left| {a \times b} \right|\left| c \right|\sin 30^\circ = 3 $
Place the value of $ \sin 30^\circ = \dfrac{1}{2} $ in the above equation –
$ \left| {a \times b} \right|\left| c \right|\dfrac{1}{2} = 3 $
When any term in the division changes its side, it goes to the numerator of the opposite side.
$
\left| {a \times b} \right|\left| c \right| = 3 \times 2 \\
\Rightarrow \left| {a \times b} \right|\left| c \right| = 6 \;
$
Make mode of “c” as the subject –
$ \Rightarrow \left| c \right| = \dfrac{6}{{\left| {a \times b} \right|}} $ ..... (B)
Now, find $ \left| {a \times b} \right| $
$ a \times b = \left| {\begin{array}{*{20}{c}}
i&j&k \\
2&1&{ - 2} \\
1&1&0
\end{array}} \right| $
Open the determinant-
$ \Rightarrow a \times b = 2\widehat i - 2\widehat j + \widehat k $
Take mode in the above equation –
$ \Rightarrow \left| {a \times b} \right| = \sqrt {{2^2} + {2^2} + {1^2}} $
Simplification –
$
\Rightarrow \left| {a \times b} \right| = \sqrt 9 \\
\Rightarrow \left| {a \times b} \right| = 3{\text{ }}....{\text{ (C)}} \;
$
Place value of equation (c) in the equation (B)
$
\Rightarrow \left| c \right| = \dfrac{6}{3} \\
\Rightarrow \left| c \right| = 2\,{\text{ }}...{\text{ (D)}} \;
$
Place values in the equation (A)
$ \Rightarrow 4 + 9 - 2c.a = 9{\text{ }} $
Same terms with the same sign cancel each other from both sides of the equation. Therefore, remove
$ \Rightarrow 4 - 2c.a = 0{\text{ }} $
Make unknown the subject –
$
\Rightarrow 2c.a = 4 \\
\Rightarrow c.a = 2{\text{ }} \;
$
So, the correct answer is “Option B”.
Note: Be careful while opening the brackets and simplification. Be good in multiples and concepts of square and square-root. Always remember the values of the angles for sine, cosine for direct substitution.
Complete step-by-step answer:
Given that - $ \overrightarrow a = 2\widehat i + \widehat j - 2\widehat k $
Take its magnitude.
$ \Rightarrow \left| a \right| = \sqrt {{{(2)}^2} + {{(1)}^2} + {{( - 2)}^2}} $
Simplify,
$
\Rightarrow \left| a \right| = \sqrt {4 + 1 + 4} \\
\Rightarrow \left| a \right| = \sqrt 9 \\
\Rightarrow \left| a \right| = 3 \;
$
Similarly, take magnitude for the vector, “b”
$ \overrightarrow b = \widehat i + \widehat {j.} $
$
\Rightarrow \left| b \right| = \sqrt {{{(1)}^2} + {{(1)}^2}} \\
\Rightarrow \left| b \right| = \sqrt 2 \;
$
Now, given that –
$ \left| {c - a} \right| = 3 $
Take square on both the sides of the equation –
$ {\left| {c - a} \right|^2} = {3^2} $
Simplify the above equation. Open the brackets by using the square of the difference formula.
$ \Rightarrow {\left| c \right|^2} + {\left| a \right|^2} - 2c.a = 9{\text{ }}.....{\text{(A)}} $
Also, given that –
$ \left| {(\overrightarrow a \times \overrightarrow {b)} \times \overrightarrow c } \right| = 3 $
Apply the property of the cross-product –
$ \left| {a \times b} \right|\left| c \right|\sin 30^\circ = 3 $
Place the value of $ \sin 30^\circ = \dfrac{1}{2} $ in the above equation –
$ \left| {a \times b} \right|\left| c \right|\dfrac{1}{2} = 3 $
When any term in the division changes its side, it goes to the numerator of the opposite side.
$
\left| {a \times b} \right|\left| c \right| = 3 \times 2 \\
\Rightarrow \left| {a \times b} \right|\left| c \right| = 6 \;
$
Make mode of “c” as the subject –
$ \Rightarrow \left| c \right| = \dfrac{6}{{\left| {a \times b} \right|}} $ ..... (B)
Now, find $ \left| {a \times b} \right| $
$ a \times b = \left| {\begin{array}{*{20}{c}}
i&j&k \\
2&1&{ - 2} \\
1&1&0
\end{array}} \right| $
Open the determinant-
$ \Rightarrow a \times b = 2\widehat i - 2\widehat j + \widehat k $
Take mode in the above equation –
$ \Rightarrow \left| {a \times b} \right| = \sqrt {{2^2} + {2^2} + {1^2}} $
Simplification –
$
\Rightarrow \left| {a \times b} \right| = \sqrt 9 \\
\Rightarrow \left| {a \times b} \right| = 3{\text{ }}....{\text{ (C)}} \;
$
Place value of equation (c) in the equation (B)
$
\Rightarrow \left| c \right| = \dfrac{6}{3} \\
\Rightarrow \left| c \right| = 2\,{\text{ }}...{\text{ (D)}} \;
$
Place values in the equation (A)
$ \Rightarrow 4 + 9 - 2c.a = 9{\text{ }} $
Same terms with the same sign cancel each other from both sides of the equation. Therefore, remove
$ \Rightarrow 4 - 2c.a = 0{\text{ }} $
Make unknown the subject –
$
\Rightarrow 2c.a = 4 \\
\Rightarrow c.a = 2{\text{ }} \;
$
So, the correct answer is “Option B”.
Note: Be careful while opening the brackets and simplification. Be good in multiples and concepts of square and square-root. Always remember the values of the angles for sine, cosine for direct substitution.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
