
Let \[\left[ x \right]\]be the greatest integer less than or equal to x. Then, at which of the following point(s), the function\[f(x) = x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right)\]is discontinuous?
(A). \[x = 2\]
(B). \[x = 0\]
(C). \[x = 1\]
(D). \[x = - 1\]
Answer
510.3k+ views
Hint: To solve the question we need to check the continuity of function at each point given in the options. To check the discontinuity of the function f(x) at first we have to determine the LHL (Left Hand Limit) and RHL (Right Hand limit) of the particular points. When the point at which the LHL and RHL are equal, then the function f(x) is continuous at that particular point.
Complete step-by-step answer:
Now we will find out the LHL and RHL of the points given in the options.
We know for a point \[x = a\]the LHL and RHL are given by
\[LHL = \mathop {\lim }\limits_{x \to {a^ - }} f(x) = \mathop {\lim }\limits_{h \to 0} f(a - h)\] ………………………………………… (1)
And
\[RHL = \mathop {\lim }\limits_{x \to {a^ + }} f(x) = \mathop {\lim }\limits_{h \to 0} f(a + h)\] ……………………….…………. (2)
Given function is\[f(x) = x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right)\] ……………………………………… (3)
Applying this formula let’s find out the LHL and RHL at\[x = 2\].
\[
LHL = \mathop {\lim }\limits_{x \to {2^ - }} f(x) \\
= \mathop {\lim }\limits_{x \to {2^ - }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\] ………………………………………. (4)
Now here we see that as\[x \to {2^ - }\], the value of x approaches to 2 from left side and the value of x must lie between 1 and 2 that means \[1 \leqslant x \leqslant 2\].Therefore \[\left[ x \right] = 1\] now the eq. (4) reduces to
\[
LHL = \mathop {\lim }\limits_{x \to {2^ - }} x\cos \left( {\pi \left( {x + 1} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (2 - h)\cos \left( {\pi \left( {2 - h + 1} \right)} \right) \\
= 2\cos 3\pi \\
= - 2 \\
\]
………………………………... (5)
And
\[
RHL = \mathop {\lim }\limits_{x \to {2^ + }} f(x) \\
= \mathop {\lim }\limits_{x \to {2^ + }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\]
………………………………. (6)
Now here we see that as\[x \to {2^ + }\], the value of x approaches to 2 from right side and the value of x must lie between 2 and 3 that means \[2 \leqslant x \leqslant 3\].Therefore \[\left[ x \right] = 2\] now the eq. (6) reduces to
\[
RHL = \mathop {\lim }\limits_{x \to {2^ + }} x\cos \left( {\pi \left( {x + 2} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (2 - h)\cos \left( {\pi \left( {2 - h + 2} \right)} \right) \\
= 2\cos 4\pi \\
= 2 \\
\]
………………………………………… (7)
Here \[LHL \ne RHL\],hence f(x) is discontinuous at\[x = 2\].
Then for\[x = 0\],
\[
LHL = \mathop {\lim }\limits_{x \to {0^ - }} f(x) \\
= \mathop {\lim }\limits_{x \to {0^ - }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\\
\]
………………………………………………. (8)
Now here we see that as\[x \to {0^ - }\], the value of x approaches to 0 from left side and the value of x must lie between -1 and 0 that means \[ - 1 \leqslant x \leqslant 0\].Therefore \[\left[ x \right] = - 1\] now the eq. (8) reduces to
\[
LHL = \mathop {\lim }\limits_{x \to {0^ - }} x\cos \left( {\pi \left( {x - 1} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (0 - h)\cos \left( {\pi \left( {0 - h - 1} \right)} \right) \\
= 0 \times \cos \left( { - \pi } \right) \\
= 0 \\
\]
…………………………………. (9)
\[
RHL = \mathop {\lim }\limits_{x \to {0^ + }} f(x) \\
= \mathop {\lim }\limits_{x \to {0^ + }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\]
………………………………… (10)
Now here we see that as\[x \to {0^ + }\], the value of x approaches to 0 from right side and the value of x must lie between 0 and 1 that means \[0 \leqslant x \leqslant 1\].Therefore \[\left[ x \right] = 0\] now the eq. (10) reduces to
\[
RHL = \mathop {\lim }\limits_{x \to {0^ + }} x\cos \left( {\pi \left( {x + 0} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (0 - h)\cos \left( {\pi \left( {0 - h} \right)} \right) \\
= 0 \times \cos 0 \\
= 0 \\
\]
…………………………………. (11)
Here \[LHL = RHL\],hence f(x) is continuous at \[x = 0\].
Then for\[x = 1\],
\[
LHL = \mathop {\lim }\limits_{x \to {1^ - }} f(x) \\
= \mathop {\lim }\limits_{x \to {1^ - }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\]
…………………………. (12)
Now here we see that as\[x \to {1^ - }\], the value of x approaches to 1 from left side and the value of x must lie between 0 and 1 that means \[0 \leqslant x \leqslant 1\].Therefore \[\left[ x \right] = 0\] now the eq. (12) reduces to
For \[x = 1\]
\[
LHL = \mathop {\lim }\limits_{x \to {1^ - }} x\cos \left( {\pi \left( {x + 0} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (1 - h)\cos \left( {\pi \left( {1 - h} \right)} \right) \\
= 1 \times \cos \pi \\
= \cos \pi \\
= - 1 \\
\]
…………………………………….. (13)
\[
RHL = \mathop {\lim }\limits_{x \to {1^ + }} f(x) \\
= \mathop {\lim }\limits_{x \to {1^ + }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\]
……………………………………….. (14)
Now here we see that as\[x \to {1^ + }\], the value of x approaches to 1 from right side and the value of x must lie between 0 and 1 that means \[1 \leqslant x \leqslant 2\].Therefore \[\left[ x \right] = 1\] now the eq. (14) reduces to
\[
RHL = \mathop {\lim }\limits_{x \to {1^ + }} x\cos \left( {\pi \left( {x + 1} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (1 - h)\cos \left( {\pi \left( {1 - h + 1} \right)} \right) \\
= 1 \times \cos 2\pi \\
= 1 \\
\]
…………………………….. (15)
Here \[LHL \ne RHL\],hence f(x) is discontinuous at \[x = 1\].
For\[x = - 1\],
\[
LHL = \mathop {\lim }\limits_{x \to - {1^ - }} f(x) \\
= \mathop {\lim }\limits_{x \to - {1^ - }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\]
……………………………………….. (16)
Now here we see that as\[x \to - {1^ - }\], the value of x approaches to -1 from left side and the value of x must lie between 0 and 1 that means \[ - 2 \leqslant x \leqslant - 1\].Therefore \[\left[ x \right] = - 2\] now the eq. (16) reduces to
\[
LHL = \mathop {\lim }\limits_{x \to - {1^ - }} x\cos \left( {\pi \left( {x - 2} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} ( - 1 - h)\cos \left( {\pi \left( { - 1 - h - 2} \right)} \right) \\
= - 1 \times \cos ( - 3\pi ) \\
= - \cos 3\pi \\
= 1 \\
\]
……………………………….. (17)
\[
RHL = \mathop {\lim }\limits_{x \to - {1^ + }} f(x) \\
= \mathop {\lim }\limits_{x \to - {1^ + }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\]
…………………….. (18)
Now here we see that as\[x \to - {1^ + }\], the value of x approaches to -1from right side and the value of x must lie between -1 and 0 that means \[ - 1 \leqslant x \leqslant 0\].Therefore \[\left[ x \right] = - 1\] now the eq. (18) reduces to
\[
RHL = \mathop {\lim }\limits_{x \to - {1^ + }} x\cos \left( {\pi \left( {x - 1} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} ( - 1 - h)\cos \left( {\pi \left( { - 1 - h - 1} \right)} \right) \\
= - 1 \times \cos ( - 2\pi ) \\
= - 1 \\
\]
…………………………….. (19)
Here \[LHL \ne RHL\],hence f(x) is discontinuous at \[x = - 1\].
Therefore the options (A), (C) and (D) are correct.
Note: The statement\[x \to {a^ - }\], the value of x approaches to a from left side that means x is a number less than a and very very close to a and right hand limits of a function at a given point. Therefore \[x \to {a^ - }\]is equivalent to\[x = a - h\]. Similarly the statement\[x \to {a^ + }\], the value of x approaches a from the right hand side that means x is a number less than a and very very close to a. Therefore \[x \to {a^ + }\]is equivalent to\[x = a + h\].
Complete step-by-step answer:
Now we will find out the LHL and RHL of the points given in the options.
We know for a point \[x = a\]the LHL and RHL are given by
\[LHL = \mathop {\lim }\limits_{x \to {a^ - }} f(x) = \mathop {\lim }\limits_{h \to 0} f(a - h)\] ………………………………………… (1)
And
\[RHL = \mathop {\lim }\limits_{x \to {a^ + }} f(x) = \mathop {\lim }\limits_{h \to 0} f(a + h)\] ……………………….…………. (2)
Given function is\[f(x) = x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right)\] ……………………………………… (3)
Applying this formula let’s find out the LHL and RHL at\[x = 2\].
\[
LHL = \mathop {\lim }\limits_{x \to {2^ - }} f(x) \\
= \mathop {\lim }\limits_{x \to {2^ - }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\] ………………………………………. (4)
Now here we see that as\[x \to {2^ - }\], the value of x approaches to 2 from left side and the value of x must lie between 1 and 2 that means \[1 \leqslant x \leqslant 2\].Therefore \[\left[ x \right] = 1\] now the eq. (4) reduces to
\[
LHL = \mathop {\lim }\limits_{x \to {2^ - }} x\cos \left( {\pi \left( {x + 1} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (2 - h)\cos \left( {\pi \left( {2 - h + 1} \right)} \right) \\
= 2\cos 3\pi \\
= - 2 \\
\]
………………………………... (5)
And
\[
RHL = \mathop {\lim }\limits_{x \to {2^ + }} f(x) \\
= \mathop {\lim }\limits_{x \to {2^ + }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\]
………………………………. (6)
Now here we see that as\[x \to {2^ + }\], the value of x approaches to 2 from right side and the value of x must lie between 2 and 3 that means \[2 \leqslant x \leqslant 3\].Therefore \[\left[ x \right] = 2\] now the eq. (6) reduces to
\[
RHL = \mathop {\lim }\limits_{x \to {2^ + }} x\cos \left( {\pi \left( {x + 2} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (2 - h)\cos \left( {\pi \left( {2 - h + 2} \right)} \right) \\
= 2\cos 4\pi \\
= 2 \\
\]
………………………………………… (7)
Here \[LHL \ne RHL\],hence f(x) is discontinuous at\[x = 2\].
Then for\[x = 0\],
\[
LHL = \mathop {\lim }\limits_{x \to {0^ - }} f(x) \\
= \mathop {\lim }\limits_{x \to {0^ - }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\\
\]
………………………………………………. (8)
Now here we see that as\[x \to {0^ - }\], the value of x approaches to 0 from left side and the value of x must lie between -1 and 0 that means \[ - 1 \leqslant x \leqslant 0\].Therefore \[\left[ x \right] = - 1\] now the eq. (8) reduces to
\[
LHL = \mathop {\lim }\limits_{x \to {0^ - }} x\cos \left( {\pi \left( {x - 1} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (0 - h)\cos \left( {\pi \left( {0 - h - 1} \right)} \right) \\
= 0 \times \cos \left( { - \pi } \right) \\
= 0 \\
\]
…………………………………. (9)
\[
RHL = \mathop {\lim }\limits_{x \to {0^ + }} f(x) \\
= \mathop {\lim }\limits_{x \to {0^ + }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\]
………………………………… (10)
Now here we see that as\[x \to {0^ + }\], the value of x approaches to 0 from right side and the value of x must lie between 0 and 1 that means \[0 \leqslant x \leqslant 1\].Therefore \[\left[ x \right] = 0\] now the eq. (10) reduces to
\[
RHL = \mathop {\lim }\limits_{x \to {0^ + }} x\cos \left( {\pi \left( {x + 0} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (0 - h)\cos \left( {\pi \left( {0 - h} \right)} \right) \\
= 0 \times \cos 0 \\
= 0 \\
\]
…………………………………. (11)
Here \[LHL = RHL\],hence f(x) is continuous at \[x = 0\].
Then for\[x = 1\],
\[
LHL = \mathop {\lim }\limits_{x \to {1^ - }} f(x) \\
= \mathop {\lim }\limits_{x \to {1^ - }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\]
…………………………. (12)
Now here we see that as\[x \to {1^ - }\], the value of x approaches to 1 from left side and the value of x must lie between 0 and 1 that means \[0 \leqslant x \leqslant 1\].Therefore \[\left[ x \right] = 0\] now the eq. (12) reduces to
For \[x = 1\]
\[
LHL = \mathop {\lim }\limits_{x \to {1^ - }} x\cos \left( {\pi \left( {x + 0} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (1 - h)\cos \left( {\pi \left( {1 - h} \right)} \right) \\
= 1 \times \cos \pi \\
= \cos \pi \\
= - 1 \\
\]
…………………………………….. (13)
\[
RHL = \mathop {\lim }\limits_{x \to {1^ + }} f(x) \\
= \mathop {\lim }\limits_{x \to {1^ + }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\]
……………………………………….. (14)
Now here we see that as\[x \to {1^ + }\], the value of x approaches to 1 from right side and the value of x must lie between 0 and 1 that means \[1 \leqslant x \leqslant 2\].Therefore \[\left[ x \right] = 1\] now the eq. (14) reduces to
\[
RHL = \mathop {\lim }\limits_{x \to {1^ + }} x\cos \left( {\pi \left( {x + 1} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} (1 - h)\cos \left( {\pi \left( {1 - h + 1} \right)} \right) \\
= 1 \times \cos 2\pi \\
= 1 \\
\]
…………………………….. (15)
Here \[LHL \ne RHL\],hence f(x) is discontinuous at \[x = 1\].
For\[x = - 1\],
\[
LHL = \mathop {\lim }\limits_{x \to - {1^ - }} f(x) \\
= \mathop {\lim }\limits_{x \to - {1^ - }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\]
……………………………………….. (16)
Now here we see that as\[x \to - {1^ - }\], the value of x approaches to -1 from left side and the value of x must lie between 0 and 1 that means \[ - 2 \leqslant x \leqslant - 1\].Therefore \[\left[ x \right] = - 2\] now the eq. (16) reduces to
\[
LHL = \mathop {\lim }\limits_{x \to - {1^ - }} x\cos \left( {\pi \left( {x - 2} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} ( - 1 - h)\cos \left( {\pi \left( { - 1 - h - 2} \right)} \right) \\
= - 1 \times \cos ( - 3\pi ) \\
= - \cos 3\pi \\
= 1 \\
\]
……………………………….. (17)
\[
RHL = \mathop {\lim }\limits_{x \to - {1^ + }} f(x) \\
= \mathop {\lim }\limits_{x \to - {1^ + }} x\cos \left( {\pi \left( {x + \left[ x \right]} \right)} \right) \\
\]
…………………….. (18)
Now here we see that as\[x \to - {1^ + }\], the value of x approaches to -1from right side and the value of x must lie between -1 and 0 that means \[ - 1 \leqslant x \leqslant 0\].Therefore \[\left[ x \right] = - 1\] now the eq. (18) reduces to
\[
RHL = \mathop {\lim }\limits_{x \to - {1^ + }} x\cos \left( {\pi \left( {x - 1} \right)} \right) \\
= \mathop {\lim }\limits_{h \to 0} ( - 1 - h)\cos \left( {\pi \left( { - 1 - h - 1} \right)} \right) \\
= - 1 \times \cos ( - 2\pi ) \\
= - 1 \\
\]
…………………………….. (19)
Here \[LHL \ne RHL\],hence f(x) is discontinuous at \[x = - 1\].
Therefore the options (A), (C) and (D) are correct.
Note: The statement\[x \to {a^ - }\], the value of x approaches to a from left side that means x is a number less than a and very very close to a and right hand limits of a function at a given point. Therefore \[x \to {a^ - }\]is equivalent to\[x = a - h\]. Similarly the statement\[x \to {a^ + }\], the value of x approaches a from the right hand side that means x is a number less than a and very very close to a. Therefore \[x \to {a^ + }\]is equivalent to\[x = a + h\].
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE
