
Let ${{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27}\text{ }\left( i=\sqrt{-1} \right)$, where x and y are real numbers, then $y-x$ equals:
$\begin{align}
& \text{A}\text{. -85} \\
& \text{B}\text{. 85} \\
& \text{C}\text{. -91} \\
& \text{D}\text{. 91} \\
\end{align}$
Answer
590.4k+ views
Hint: We have given an expression ${{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27}\text{ }\left( i=\sqrt{-1} \right)$. Now, first we simplify L.H.S. of the given equation ${{\left( -2-\dfrac{1}{3}i \right)}^{3}}$ by using the formula ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$. Then, compare the L.H.S. and R.H.S. of the given equation to get the values of $x$ and $y$. Then, put the values in $y-x$ and solve to find the value.
Complete step-by-step answer:
We have been given an equation ${{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27}\text{ }\left( i=\sqrt{-1} \right)$, where x and y are real numbers.
We have to find the value of $y-x$.
Now, let us first take the L.H.S. of the given equation.
$\Rightarrow {{\left( -2-\dfrac{1}{3}i \right)}^{3}}$or $\Rightarrow -{{\left( 2+\dfrac{1}{3}i \right)}^{3}}$
Now, we know that ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$
Here, we have $a=2,b=\dfrac{i}{3}$
Now, substituting the values, we get
\[\Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( {{2}^{3}}+{{\left( \dfrac{i}{3} \right)}^{3}}+3\times {{2}^{2}}\times \dfrac{i}{3}+3\times 2\times {{\left( \dfrac{i}{3} \right)}^{2}} \right)\]
Now, simplifying the above equation we get
\[\begin{align}
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( 8+{{\left( \dfrac{i}{3} \right)}^{3}}+3\times 4\times \dfrac{i}{3}+3\times 2\times {{\left( \dfrac{i}{3} \right)}^{2}} \right) \\
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( 8+\dfrac{{{i}^{3}}}{{{3}^{3}}}+4i+3\times 2\times \dfrac{{{i}^{2}}}{{{3}^{2}}} \right) \\
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( 8+\dfrac{{{i}^{3}}}{27}+4i+2\times \dfrac{{{i}^{2}}}{3} \right) \\
\end{align}\]
Now, take L.C.M. to solve further, we get
\[\begin{align}
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{8\times 27+{{i}^{3}}+27\times 4i+9\times 2{{i}^{2}}}{27} \right) \\
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{216+{{i}^{3}}+108i+18{{i}^{2}}}{27} \right) \\
\end{align}\]
Now, we know that the values of imaginary number will be
$\begin{align}
& {{i}^{2}}=-1 \\
& {{i}^{3}}=-i \\
\end{align}$
When we substitute values, we get
\[\Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{216-i+108i-18}{27} \right)\]
When we simplify the above equation, we get
\[\Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{198+107i}{27} \right)\]
Now, substitute the value in the given equation we have
$\begin{align}
& {{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27} \\
& \Rightarrow -\left( \dfrac{198+107i}{27} \right)=\dfrac{x+iy}{27} \\
& \Rightarrow \left( \dfrac{-198-107i}{27} \right)=\dfrac{x+iy}{27} \\
\end{align}$
When we compare L.H.S. and R.H.S. of the given equation, we get the values
$\begin{align}
& x=-198 \\
& y=-107 \\
\end{align}$
Now, we have to calculate the value of $y-x$ as asked in the question, we get
$\begin{align}
& y-x=-107-\left( -198 \right) \\
& y-x=-107+198 \\
& y-x=91 \\
\end{align}$
So, the value of $y-x$ is $91$.
So, the correct answer is “Option D”.
Note: A complex number is a combination of real number and imaginary number. In such types of questions we need the values of imaginary numbers, so always keep in mind the common values of imaginary numbers to solve easily. As the calculation is complex and lengthy so be careful while solving. The identity used is ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$ so please be careful to write the expansion without making change in signs of the terms of the expansion.
Complete step-by-step answer:
We have been given an equation ${{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27}\text{ }\left( i=\sqrt{-1} \right)$, where x and y are real numbers.
We have to find the value of $y-x$.
Now, let us first take the L.H.S. of the given equation.
$\Rightarrow {{\left( -2-\dfrac{1}{3}i \right)}^{3}}$or $\Rightarrow -{{\left( 2+\dfrac{1}{3}i \right)}^{3}}$
Now, we know that ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$
Here, we have $a=2,b=\dfrac{i}{3}$
Now, substituting the values, we get
\[\Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( {{2}^{3}}+{{\left( \dfrac{i}{3} \right)}^{3}}+3\times {{2}^{2}}\times \dfrac{i}{3}+3\times 2\times {{\left( \dfrac{i}{3} \right)}^{2}} \right)\]
Now, simplifying the above equation we get
\[\begin{align}
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( 8+{{\left( \dfrac{i}{3} \right)}^{3}}+3\times 4\times \dfrac{i}{3}+3\times 2\times {{\left( \dfrac{i}{3} \right)}^{2}} \right) \\
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( 8+\dfrac{{{i}^{3}}}{{{3}^{3}}}+4i+3\times 2\times \dfrac{{{i}^{2}}}{{{3}^{2}}} \right) \\
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( 8+\dfrac{{{i}^{3}}}{27}+4i+2\times \dfrac{{{i}^{2}}}{3} \right) \\
\end{align}\]
Now, take L.C.M. to solve further, we get
\[\begin{align}
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{8\times 27+{{i}^{3}}+27\times 4i+9\times 2{{i}^{2}}}{27} \right) \\
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{216+{{i}^{3}}+108i+18{{i}^{2}}}{27} \right) \\
\end{align}\]
Now, we know that the values of imaginary number will be
$\begin{align}
& {{i}^{2}}=-1 \\
& {{i}^{3}}=-i \\
\end{align}$
When we substitute values, we get
\[\Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{216-i+108i-18}{27} \right)\]
When we simplify the above equation, we get
\[\Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{198+107i}{27} \right)\]
Now, substitute the value in the given equation we have
$\begin{align}
& {{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27} \\
& \Rightarrow -\left( \dfrac{198+107i}{27} \right)=\dfrac{x+iy}{27} \\
& \Rightarrow \left( \dfrac{-198-107i}{27} \right)=\dfrac{x+iy}{27} \\
\end{align}$
When we compare L.H.S. and R.H.S. of the given equation, we get the values
$\begin{align}
& x=-198 \\
& y=-107 \\
\end{align}$
Now, we have to calculate the value of $y-x$ as asked in the question, we get
$\begin{align}
& y-x=-107-\left( -198 \right) \\
& y-x=-107+198 \\
& y-x=91 \\
\end{align}$
So, the value of $y-x$ is $91$.
So, the correct answer is “Option D”.
Note: A complex number is a combination of real number and imaginary number. In such types of questions we need the values of imaginary numbers, so always keep in mind the common values of imaginary numbers to solve easily. As the calculation is complex and lengthy so be careful while solving. The identity used is ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$ so please be careful to write the expansion without making change in signs of the terms of the expansion.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

