
Let ${{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27}\text{ }\left( i=\sqrt{-1} \right)$, where x and y are real numbers, then $y-x$ equals:
$\begin{align}
& \text{A}\text{. -85} \\
& \text{B}\text{. 85} \\
& \text{C}\text{. -91} \\
& \text{D}\text{. 91} \\
\end{align}$
Answer
512.1k+ views
Hint: We have given an expression ${{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27}\text{ }\left( i=\sqrt{-1} \right)$. Now, first we simplify L.H.S. of the given equation ${{\left( -2-\dfrac{1}{3}i \right)}^{3}}$ by using the formula ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$. Then, compare the L.H.S. and R.H.S. of the given equation to get the values of $x$ and $y$. Then, put the values in $y-x$ and solve to find the value.
Complete step-by-step answer:
We have been given an equation ${{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27}\text{ }\left( i=\sqrt{-1} \right)$, where x and y are real numbers.
We have to find the value of $y-x$.
Now, let us first take the L.H.S. of the given equation.
$\Rightarrow {{\left( -2-\dfrac{1}{3}i \right)}^{3}}$or $\Rightarrow -{{\left( 2+\dfrac{1}{3}i \right)}^{3}}$
Now, we know that ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$
Here, we have $a=2,b=\dfrac{i}{3}$
Now, substituting the values, we get
\[\Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( {{2}^{3}}+{{\left( \dfrac{i}{3} \right)}^{3}}+3\times {{2}^{2}}\times \dfrac{i}{3}+3\times 2\times {{\left( \dfrac{i}{3} \right)}^{2}} \right)\]
Now, simplifying the above equation we get
\[\begin{align}
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( 8+{{\left( \dfrac{i}{3} \right)}^{3}}+3\times 4\times \dfrac{i}{3}+3\times 2\times {{\left( \dfrac{i}{3} \right)}^{2}} \right) \\
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( 8+\dfrac{{{i}^{3}}}{{{3}^{3}}}+4i+3\times 2\times \dfrac{{{i}^{2}}}{{{3}^{2}}} \right) \\
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( 8+\dfrac{{{i}^{3}}}{27}+4i+2\times \dfrac{{{i}^{2}}}{3} \right) \\
\end{align}\]
Now, take L.C.M. to solve further, we get
\[\begin{align}
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{8\times 27+{{i}^{3}}+27\times 4i+9\times 2{{i}^{2}}}{27} \right) \\
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{216+{{i}^{3}}+108i+18{{i}^{2}}}{27} \right) \\
\end{align}\]
Now, we know that the values of imaginary number will be
$\begin{align}
& {{i}^{2}}=-1 \\
& {{i}^{3}}=-i \\
\end{align}$
When we substitute values, we get
\[\Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{216-i+108i-18}{27} \right)\]
When we simplify the above equation, we get
\[\Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{198+107i}{27} \right)\]
Now, substitute the value in the given equation we have
$\begin{align}
& {{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27} \\
& \Rightarrow -\left( \dfrac{198+107i}{27} \right)=\dfrac{x+iy}{27} \\
& \Rightarrow \left( \dfrac{-198-107i}{27} \right)=\dfrac{x+iy}{27} \\
\end{align}$
When we compare L.H.S. and R.H.S. of the given equation, we get the values
$\begin{align}
& x=-198 \\
& y=-107 \\
\end{align}$
Now, we have to calculate the value of $y-x$ as asked in the question, we get
$\begin{align}
& y-x=-107-\left( -198 \right) \\
& y-x=-107+198 \\
& y-x=91 \\
\end{align}$
So, the value of $y-x$ is $91$.
So, the correct answer is “Option D”.
Note: A complex number is a combination of real number and imaginary number. In such types of questions we need the values of imaginary numbers, so always keep in mind the common values of imaginary numbers to solve easily. As the calculation is complex and lengthy so be careful while solving. The identity used is ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$ so please be careful to write the expansion without making change in signs of the terms of the expansion.
Complete step-by-step answer:
We have been given an equation ${{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27}\text{ }\left( i=\sqrt{-1} \right)$, where x and y are real numbers.
We have to find the value of $y-x$.
Now, let us first take the L.H.S. of the given equation.
$\Rightarrow {{\left( -2-\dfrac{1}{3}i \right)}^{3}}$or $\Rightarrow -{{\left( 2+\dfrac{1}{3}i \right)}^{3}}$
Now, we know that ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$
Here, we have $a=2,b=\dfrac{i}{3}$
Now, substituting the values, we get
\[\Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( {{2}^{3}}+{{\left( \dfrac{i}{3} \right)}^{3}}+3\times {{2}^{2}}\times \dfrac{i}{3}+3\times 2\times {{\left( \dfrac{i}{3} \right)}^{2}} \right)\]
Now, simplifying the above equation we get
\[\begin{align}
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( 8+{{\left( \dfrac{i}{3} \right)}^{3}}+3\times 4\times \dfrac{i}{3}+3\times 2\times {{\left( \dfrac{i}{3} \right)}^{2}} \right) \\
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( 8+\dfrac{{{i}^{3}}}{{{3}^{3}}}+4i+3\times 2\times \dfrac{{{i}^{2}}}{{{3}^{2}}} \right) \\
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( 8+\dfrac{{{i}^{3}}}{27}+4i+2\times \dfrac{{{i}^{2}}}{3} \right) \\
\end{align}\]
Now, take L.C.M. to solve further, we get
\[\begin{align}
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{8\times 27+{{i}^{3}}+27\times 4i+9\times 2{{i}^{2}}}{27} \right) \\
& \Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{216+{{i}^{3}}+108i+18{{i}^{2}}}{27} \right) \\
\end{align}\]
Now, we know that the values of imaginary number will be
$\begin{align}
& {{i}^{2}}=-1 \\
& {{i}^{3}}=-i \\
\end{align}$
When we substitute values, we get
\[\Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{216-i+108i-18}{27} \right)\]
When we simplify the above equation, we get
\[\Rightarrow -{{\left( 2+\dfrac{i}{3} \right)}^{3}}=-\left( \dfrac{198+107i}{27} \right)\]
Now, substitute the value in the given equation we have
$\begin{align}
& {{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27} \\
& \Rightarrow -\left( \dfrac{198+107i}{27} \right)=\dfrac{x+iy}{27} \\
& \Rightarrow \left( \dfrac{-198-107i}{27} \right)=\dfrac{x+iy}{27} \\
\end{align}$
When we compare L.H.S. and R.H.S. of the given equation, we get the values
$\begin{align}
& x=-198 \\
& y=-107 \\
\end{align}$
Now, we have to calculate the value of $y-x$ as asked in the question, we get
$\begin{align}
& y-x=-107-\left( -198 \right) \\
& y-x=-107+198 \\
& y-x=91 \\
\end{align}$
So, the value of $y-x$ is $91$.
So, the correct answer is “Option D”.
Note: A complex number is a combination of real number and imaginary number. In such types of questions we need the values of imaginary numbers, so always keep in mind the common values of imaginary numbers to solve easily. As the calculation is complex and lengthy so be careful while solving. The identity used is ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$ so please be careful to write the expansion without making change in signs of the terms of the expansion.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
