
Let K be a positive real number and let A = $\left[ {\begin{array}{*{20}{c}}
{2k - 1}&{2\sqrt k }&{2\sqrt k } \\
{2\sqrt k }&1&{ - 2k} \\
{ - 2\sqrt k }&{2k}&{ - 1}
\end{array}} \right]$ and B = $\left[ {\begin{array}{*{20}{c}}
0&{2k - 1}&{\sqrt k } \\
{1 - 2k}&0&{2\sqrt k } \\
{ - \sqrt k }&{ - 2\sqrt k }&0
\end{array}} \right]$. If det (adj A) + det (adj B) = ${10^6}$, then [K] is equal to.
[Note: adj M denotes the adjoint of a square matrix M and [K] denotes the largest integer less than or equal to K].
Answer
591.3k+ views
Hint: In this particular question use the concept that det (adj A) = ${\left| A \right|^{n - 1}}$, where n is the order of the matrix, order of matrix in a square matrix is nothing but the number of rows or number of columns, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
A = $\left[ {\begin{array}{*{20}{c}}
{2k - 1}&{2\sqrt k }&{2\sqrt k } \\
{2\sqrt k }&1&{ - 2k} \\
{ - 2\sqrt k }&{2k}&{ - 1}
\end{array}} \right]$ and B = $\left[ {\begin{array}{*{20}{c}}
0&{2k - 1}&{\sqrt k } \\
{1 - 2k}&0&{2\sqrt k } \\
{ - \sqrt k }&{ - 2\sqrt k }&0
\end{array}} \right]$.
Now as we know that the det (adj A) = ${\left| A \right|^{n - 1}}$, where n is the order of the matrix, order of matrix in a square matrix is nothing but the number of rows or number of columns3.
So in the given matrix the order is 3, so n = 3.
\[ \Rightarrow \det \left( {{\text{adjA}}} \right) = {\left| A \right|^{3 - 1}} = {\left| A \right|^2}\]............ (1)
So first find out determinant of A we have,
\[ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
{2k - 1}&{2\sqrt k }&{2\sqrt k } \\
{2\sqrt k }&1&{ - 2k} \\
{ - 2\sqrt k }&{2k}&{ - 1}
\end{array}} \right|\]
Now expand the determinant we have,
\[ \Rightarrow \left| A \right| = \left[ {\left( {2k - 1} \right)\left| {\begin{array}{*{20}{c}}
1&{ - 2k} \\
{2k}&{ - 1}
\end{array}} \right| - 2\sqrt k \left| {\begin{array}{*{20}{c}}
{2\sqrt k }&{ - 2k} \\
{ - 2\sqrt k }&{ - 1}
\end{array}} \right| + 2\sqrt k \left| {\begin{array}{*{20}{c}}
{2\sqrt k }&1 \\
{ - 2\sqrt k }&{2k}
\end{array}} \right|} \right]\]
\[ \Rightarrow \left| A \right| = \left[ {\left( {2k - 1} \right)\left( { - 1 + 4{k^2}} \right) - 2\sqrt k \left( { - 2\sqrt k - 4k\sqrt k } \right) + 2\sqrt k \left( {4k\sqrt k + 2\sqrt k } \right)} \right]\]
\[ \Rightarrow \left| A \right| = - 2k + 1 + 8{k^3} - 4{k^2} + 4k + 8{k^2} + 8{k^2} + 4k\]
\[ \Rightarrow \left| A \right| = 8{k^3} + 12{k^2} + 6k + 1\]
\[ \Rightarrow \left| A \right| = {\left( {2k + 1} \right)^3}\]
Now from equation (1) we have,
\[ \Rightarrow \det \left( {{\text{adjA}}} \right) = {\left( {{{\left( {2k + 1} \right)}^3}} \right)^2} = {\left( {2k + 1} \right)^6}\].................. (2)
Similarly,
\[ \Rightarrow \det \left( {{\text{adjB}}} \right) = {\left| B \right|^{3 - 1}} = {\left| B \right|^2}\]................ (3)
So first find out determinant of A we have,
\[ \Rightarrow \left| B \right| = \left| {\begin{array}{*{20}{c}}
0&{2k - 1}&{\sqrt k } \\
{1 - 2k}&0&{2\sqrt k } \\
{ - \sqrt k }&{ - 2\sqrt k }&0
\end{array}} \right|\]
Now expand the determinant we have,
\[ \Rightarrow \left| B \right| = \left[ {0 - \left( {2k - 1} \right)\left| {\begin{array}{*{20}{c}}
{1 - 2k}&{2\sqrt k } \\
{ - \sqrt k }&0
\end{array}} \right| + \sqrt k \left| {\begin{array}{*{20}{c}}
{1 - 2k}&0 \\
{ - \sqrt k }&{ - 2\sqrt k }
\end{array}} \right|} \right]\]
\[ \Rightarrow \left| B \right| = \left[ {0 - \left( {2k - 1} \right)\left( {0 + 2k} \right) + \sqrt k \left( { - 2\left( {1 - 2k} \right)\sqrt k + 0} \right)} \right]\]
\[ \Rightarrow \left| B \right| = \left[ { - 4{k^2} + 2k - 2k + 4{k^2}} \right]\]
\[ \Rightarrow \left| B \right| = 0\]
Now from equation (3) we have,
\[ \Rightarrow \det \left( {{\text{adjB}}} \right) = {0^2} = 0\].................. (4)
Now add equation (2) and (4) we have,
$ \Rightarrow {\text{det}}\left( {{\text{adjA}}} \right) + \det \left( {{\text{adjB}}} \right) = {\left( {2k + 1} \right)^6} + 0 = {\left( {2k + 1} \right)^6}$
But it is given that det (adj A) + det (adj B) = ${10^6}$
$ \Rightarrow {\left( {2k + 1} \right)^6} = {10^6}$
$ \Rightarrow \left( {2k + 1} \right) = 10$
$ \Rightarrow 2k = 9$
$ \Rightarrow k = 4.5$
Now we have to find out the value of [k], where [k] denotes the greatest integer function less than or equal to K.
Therefore,
[K] = [4.5] = 4.
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always remember some basic determinant properties and how to expand the determinant which is stated above and always recall that the greatest integer of x (say x = 0.1) i.e. [x] = [0.1] = 0 i.e. less than or equal to x.
Complete step-by-step answer:
A = $\left[ {\begin{array}{*{20}{c}}
{2k - 1}&{2\sqrt k }&{2\sqrt k } \\
{2\sqrt k }&1&{ - 2k} \\
{ - 2\sqrt k }&{2k}&{ - 1}
\end{array}} \right]$ and B = $\left[ {\begin{array}{*{20}{c}}
0&{2k - 1}&{\sqrt k } \\
{1 - 2k}&0&{2\sqrt k } \\
{ - \sqrt k }&{ - 2\sqrt k }&0
\end{array}} \right]$.
Now as we know that the det (adj A) = ${\left| A \right|^{n - 1}}$, where n is the order of the matrix, order of matrix in a square matrix is nothing but the number of rows or number of columns3.
So in the given matrix the order is 3, so n = 3.
\[ \Rightarrow \det \left( {{\text{adjA}}} \right) = {\left| A \right|^{3 - 1}} = {\left| A \right|^2}\]............ (1)
So first find out determinant of A we have,
\[ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
{2k - 1}&{2\sqrt k }&{2\sqrt k } \\
{2\sqrt k }&1&{ - 2k} \\
{ - 2\sqrt k }&{2k}&{ - 1}
\end{array}} \right|\]
Now expand the determinant we have,
\[ \Rightarrow \left| A \right| = \left[ {\left( {2k - 1} \right)\left| {\begin{array}{*{20}{c}}
1&{ - 2k} \\
{2k}&{ - 1}
\end{array}} \right| - 2\sqrt k \left| {\begin{array}{*{20}{c}}
{2\sqrt k }&{ - 2k} \\
{ - 2\sqrt k }&{ - 1}
\end{array}} \right| + 2\sqrt k \left| {\begin{array}{*{20}{c}}
{2\sqrt k }&1 \\
{ - 2\sqrt k }&{2k}
\end{array}} \right|} \right]\]
\[ \Rightarrow \left| A \right| = \left[ {\left( {2k - 1} \right)\left( { - 1 + 4{k^2}} \right) - 2\sqrt k \left( { - 2\sqrt k - 4k\sqrt k } \right) + 2\sqrt k \left( {4k\sqrt k + 2\sqrt k } \right)} \right]\]
\[ \Rightarrow \left| A \right| = - 2k + 1 + 8{k^3} - 4{k^2} + 4k + 8{k^2} + 8{k^2} + 4k\]
\[ \Rightarrow \left| A \right| = 8{k^3} + 12{k^2} + 6k + 1\]
\[ \Rightarrow \left| A \right| = {\left( {2k + 1} \right)^3}\]
Now from equation (1) we have,
\[ \Rightarrow \det \left( {{\text{adjA}}} \right) = {\left( {{{\left( {2k + 1} \right)}^3}} \right)^2} = {\left( {2k + 1} \right)^6}\].................. (2)
Similarly,
\[ \Rightarrow \det \left( {{\text{adjB}}} \right) = {\left| B \right|^{3 - 1}} = {\left| B \right|^2}\]................ (3)
So first find out determinant of A we have,
\[ \Rightarrow \left| B \right| = \left| {\begin{array}{*{20}{c}}
0&{2k - 1}&{\sqrt k } \\
{1 - 2k}&0&{2\sqrt k } \\
{ - \sqrt k }&{ - 2\sqrt k }&0
\end{array}} \right|\]
Now expand the determinant we have,
\[ \Rightarrow \left| B \right| = \left[ {0 - \left( {2k - 1} \right)\left| {\begin{array}{*{20}{c}}
{1 - 2k}&{2\sqrt k } \\
{ - \sqrt k }&0
\end{array}} \right| + \sqrt k \left| {\begin{array}{*{20}{c}}
{1 - 2k}&0 \\
{ - \sqrt k }&{ - 2\sqrt k }
\end{array}} \right|} \right]\]
\[ \Rightarrow \left| B \right| = \left[ {0 - \left( {2k - 1} \right)\left( {0 + 2k} \right) + \sqrt k \left( { - 2\left( {1 - 2k} \right)\sqrt k + 0} \right)} \right]\]
\[ \Rightarrow \left| B \right| = \left[ { - 4{k^2} + 2k - 2k + 4{k^2}} \right]\]
\[ \Rightarrow \left| B \right| = 0\]
Now from equation (3) we have,
\[ \Rightarrow \det \left( {{\text{adjB}}} \right) = {0^2} = 0\].................. (4)
Now add equation (2) and (4) we have,
$ \Rightarrow {\text{det}}\left( {{\text{adjA}}} \right) + \det \left( {{\text{adjB}}} \right) = {\left( {2k + 1} \right)^6} + 0 = {\left( {2k + 1} \right)^6}$
But it is given that det (adj A) + det (adj B) = ${10^6}$
$ \Rightarrow {\left( {2k + 1} \right)^6} = {10^6}$
$ \Rightarrow \left( {2k + 1} \right) = 10$
$ \Rightarrow 2k = 9$
$ \Rightarrow k = 4.5$
Now we have to find out the value of [k], where [k] denotes the greatest integer function less than or equal to K.
Therefore,
[K] = [4.5] = 4.
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always remember some basic determinant properties and how to expand the determinant which is stated above and always recall that the greatest integer of x (say x = 0.1) i.e. [x] = [0.1] = 0 i.e. less than or equal to x.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

