
Let K be a positive real number and let A = $\left[ {\begin{array}{*{20}{c}}
{2k - 1}&{2\sqrt k }&{2\sqrt k } \\
{2\sqrt k }&1&{ - 2k} \\
{ - 2\sqrt k }&{2k}&{ - 1}
\end{array}} \right]$ and B = $\left[ {\begin{array}{*{20}{c}}
0&{2k - 1}&{\sqrt k } \\
{1 - 2k}&0&{2\sqrt k } \\
{ - \sqrt k }&{ - 2\sqrt k }&0
\end{array}} \right]$. If det (adj A) + det (adj B) = ${10^6}$, then [K] is equal to.
[Note: adj M denotes the adjoint of a square matrix M and [K] denotes the largest integer less than or equal to K].
Answer
576.9k+ views
Hint: In this particular question use the concept that det (adj A) = ${\left| A \right|^{n - 1}}$, where n is the order of the matrix, order of matrix in a square matrix is nothing but the number of rows or number of columns, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
A = $\left[ {\begin{array}{*{20}{c}}
{2k - 1}&{2\sqrt k }&{2\sqrt k } \\
{2\sqrt k }&1&{ - 2k} \\
{ - 2\sqrt k }&{2k}&{ - 1}
\end{array}} \right]$ and B = $\left[ {\begin{array}{*{20}{c}}
0&{2k - 1}&{\sqrt k } \\
{1 - 2k}&0&{2\sqrt k } \\
{ - \sqrt k }&{ - 2\sqrt k }&0
\end{array}} \right]$.
Now as we know that the det (adj A) = ${\left| A \right|^{n - 1}}$, where n is the order of the matrix, order of matrix in a square matrix is nothing but the number of rows or number of columns3.
So in the given matrix the order is 3, so n = 3.
\[ \Rightarrow \det \left( {{\text{adjA}}} \right) = {\left| A \right|^{3 - 1}} = {\left| A \right|^2}\]............ (1)
So first find out determinant of A we have,
\[ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
{2k - 1}&{2\sqrt k }&{2\sqrt k } \\
{2\sqrt k }&1&{ - 2k} \\
{ - 2\sqrt k }&{2k}&{ - 1}
\end{array}} \right|\]
Now expand the determinant we have,
\[ \Rightarrow \left| A \right| = \left[ {\left( {2k - 1} \right)\left| {\begin{array}{*{20}{c}}
1&{ - 2k} \\
{2k}&{ - 1}
\end{array}} \right| - 2\sqrt k \left| {\begin{array}{*{20}{c}}
{2\sqrt k }&{ - 2k} \\
{ - 2\sqrt k }&{ - 1}
\end{array}} \right| + 2\sqrt k \left| {\begin{array}{*{20}{c}}
{2\sqrt k }&1 \\
{ - 2\sqrt k }&{2k}
\end{array}} \right|} \right]\]
\[ \Rightarrow \left| A \right| = \left[ {\left( {2k - 1} \right)\left( { - 1 + 4{k^2}} \right) - 2\sqrt k \left( { - 2\sqrt k - 4k\sqrt k } \right) + 2\sqrt k \left( {4k\sqrt k + 2\sqrt k } \right)} \right]\]
\[ \Rightarrow \left| A \right| = - 2k + 1 + 8{k^3} - 4{k^2} + 4k + 8{k^2} + 8{k^2} + 4k\]
\[ \Rightarrow \left| A \right| = 8{k^3} + 12{k^2} + 6k + 1\]
\[ \Rightarrow \left| A \right| = {\left( {2k + 1} \right)^3}\]
Now from equation (1) we have,
\[ \Rightarrow \det \left( {{\text{adjA}}} \right) = {\left( {{{\left( {2k + 1} \right)}^3}} \right)^2} = {\left( {2k + 1} \right)^6}\].................. (2)
Similarly,
\[ \Rightarrow \det \left( {{\text{adjB}}} \right) = {\left| B \right|^{3 - 1}} = {\left| B \right|^2}\]................ (3)
So first find out determinant of A we have,
\[ \Rightarrow \left| B \right| = \left| {\begin{array}{*{20}{c}}
0&{2k - 1}&{\sqrt k } \\
{1 - 2k}&0&{2\sqrt k } \\
{ - \sqrt k }&{ - 2\sqrt k }&0
\end{array}} \right|\]
Now expand the determinant we have,
\[ \Rightarrow \left| B \right| = \left[ {0 - \left( {2k - 1} \right)\left| {\begin{array}{*{20}{c}}
{1 - 2k}&{2\sqrt k } \\
{ - \sqrt k }&0
\end{array}} \right| + \sqrt k \left| {\begin{array}{*{20}{c}}
{1 - 2k}&0 \\
{ - \sqrt k }&{ - 2\sqrt k }
\end{array}} \right|} \right]\]
\[ \Rightarrow \left| B \right| = \left[ {0 - \left( {2k - 1} \right)\left( {0 + 2k} \right) + \sqrt k \left( { - 2\left( {1 - 2k} \right)\sqrt k + 0} \right)} \right]\]
\[ \Rightarrow \left| B \right| = \left[ { - 4{k^2} + 2k - 2k + 4{k^2}} \right]\]
\[ \Rightarrow \left| B \right| = 0\]
Now from equation (3) we have,
\[ \Rightarrow \det \left( {{\text{adjB}}} \right) = {0^2} = 0\].................. (4)
Now add equation (2) and (4) we have,
$ \Rightarrow {\text{det}}\left( {{\text{adjA}}} \right) + \det \left( {{\text{adjB}}} \right) = {\left( {2k + 1} \right)^6} + 0 = {\left( {2k + 1} \right)^6}$
But it is given that det (adj A) + det (adj B) = ${10^6}$
$ \Rightarrow {\left( {2k + 1} \right)^6} = {10^6}$
$ \Rightarrow \left( {2k + 1} \right) = 10$
$ \Rightarrow 2k = 9$
$ \Rightarrow k = 4.5$
Now we have to find out the value of [k], where [k] denotes the greatest integer function less than or equal to K.
Therefore,
[K] = [4.5] = 4.
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always remember some basic determinant properties and how to expand the determinant which is stated above and always recall that the greatest integer of x (say x = 0.1) i.e. [x] = [0.1] = 0 i.e. less than or equal to x.
Complete step-by-step answer:
A = $\left[ {\begin{array}{*{20}{c}}
{2k - 1}&{2\sqrt k }&{2\sqrt k } \\
{2\sqrt k }&1&{ - 2k} \\
{ - 2\sqrt k }&{2k}&{ - 1}
\end{array}} \right]$ and B = $\left[ {\begin{array}{*{20}{c}}
0&{2k - 1}&{\sqrt k } \\
{1 - 2k}&0&{2\sqrt k } \\
{ - \sqrt k }&{ - 2\sqrt k }&0
\end{array}} \right]$.
Now as we know that the det (adj A) = ${\left| A \right|^{n - 1}}$, where n is the order of the matrix, order of matrix in a square matrix is nothing but the number of rows or number of columns3.
So in the given matrix the order is 3, so n = 3.
\[ \Rightarrow \det \left( {{\text{adjA}}} \right) = {\left| A \right|^{3 - 1}} = {\left| A \right|^2}\]............ (1)
So first find out determinant of A we have,
\[ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
{2k - 1}&{2\sqrt k }&{2\sqrt k } \\
{2\sqrt k }&1&{ - 2k} \\
{ - 2\sqrt k }&{2k}&{ - 1}
\end{array}} \right|\]
Now expand the determinant we have,
\[ \Rightarrow \left| A \right| = \left[ {\left( {2k - 1} \right)\left| {\begin{array}{*{20}{c}}
1&{ - 2k} \\
{2k}&{ - 1}
\end{array}} \right| - 2\sqrt k \left| {\begin{array}{*{20}{c}}
{2\sqrt k }&{ - 2k} \\
{ - 2\sqrt k }&{ - 1}
\end{array}} \right| + 2\sqrt k \left| {\begin{array}{*{20}{c}}
{2\sqrt k }&1 \\
{ - 2\sqrt k }&{2k}
\end{array}} \right|} \right]\]
\[ \Rightarrow \left| A \right| = \left[ {\left( {2k - 1} \right)\left( { - 1 + 4{k^2}} \right) - 2\sqrt k \left( { - 2\sqrt k - 4k\sqrt k } \right) + 2\sqrt k \left( {4k\sqrt k + 2\sqrt k } \right)} \right]\]
\[ \Rightarrow \left| A \right| = - 2k + 1 + 8{k^3} - 4{k^2} + 4k + 8{k^2} + 8{k^2} + 4k\]
\[ \Rightarrow \left| A \right| = 8{k^3} + 12{k^2} + 6k + 1\]
\[ \Rightarrow \left| A \right| = {\left( {2k + 1} \right)^3}\]
Now from equation (1) we have,
\[ \Rightarrow \det \left( {{\text{adjA}}} \right) = {\left( {{{\left( {2k + 1} \right)}^3}} \right)^2} = {\left( {2k + 1} \right)^6}\].................. (2)
Similarly,
\[ \Rightarrow \det \left( {{\text{adjB}}} \right) = {\left| B \right|^{3 - 1}} = {\left| B \right|^2}\]................ (3)
So first find out determinant of A we have,
\[ \Rightarrow \left| B \right| = \left| {\begin{array}{*{20}{c}}
0&{2k - 1}&{\sqrt k } \\
{1 - 2k}&0&{2\sqrt k } \\
{ - \sqrt k }&{ - 2\sqrt k }&0
\end{array}} \right|\]
Now expand the determinant we have,
\[ \Rightarrow \left| B \right| = \left[ {0 - \left( {2k - 1} \right)\left| {\begin{array}{*{20}{c}}
{1 - 2k}&{2\sqrt k } \\
{ - \sqrt k }&0
\end{array}} \right| + \sqrt k \left| {\begin{array}{*{20}{c}}
{1 - 2k}&0 \\
{ - \sqrt k }&{ - 2\sqrt k }
\end{array}} \right|} \right]\]
\[ \Rightarrow \left| B \right| = \left[ {0 - \left( {2k - 1} \right)\left( {0 + 2k} \right) + \sqrt k \left( { - 2\left( {1 - 2k} \right)\sqrt k + 0} \right)} \right]\]
\[ \Rightarrow \left| B \right| = \left[ { - 4{k^2} + 2k - 2k + 4{k^2}} \right]\]
\[ \Rightarrow \left| B \right| = 0\]
Now from equation (3) we have,
\[ \Rightarrow \det \left( {{\text{adjB}}} \right) = {0^2} = 0\].................. (4)
Now add equation (2) and (4) we have,
$ \Rightarrow {\text{det}}\left( {{\text{adjA}}} \right) + \det \left( {{\text{adjB}}} \right) = {\left( {2k + 1} \right)^6} + 0 = {\left( {2k + 1} \right)^6}$
But it is given that det (adj A) + det (adj B) = ${10^6}$
$ \Rightarrow {\left( {2k + 1} \right)^6} = {10^6}$
$ \Rightarrow \left( {2k + 1} \right) = 10$
$ \Rightarrow 2k = 9$
$ \Rightarrow k = 4.5$
Now we have to find out the value of [k], where [k] denotes the greatest integer function less than or equal to K.
Therefore,
[K] = [4.5] = 4.
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always remember some basic determinant properties and how to expand the determinant which is stated above and always recall that the greatest integer of x (say x = 0.1) i.e. [x] = [0.1] = 0 i.e. less than or equal to x.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

