
Let $f(x) = {\left( {\sin \left( {{{\tan }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right)^2} - 1$ , $\left| x \right| > 1$ , if $\dfrac{{dy}}{{dx}} = \dfrac{1}{2}\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}\left( {f(x)} \right)} \right)$ and $y\left( {\sqrt 3 } \right) = \dfrac{\pi }{6}$ , then $y\left( { - \sqrt 3 } \right)$ is equal to :
(A) $ - \dfrac{\pi }{6}$
(B) $\dfrac{{5\pi }}{6}$
(C) $\dfrac{{2\pi }}{3}$
(D) $\dfrac{\pi }{3}$
Answer
569.1k+ views
Hint: Since in the given question we need to determine the value of $y\left( { - \sqrt 3 } \right)$ so that means we need to find the value of $y(x)$ , in the first part we will be determine the value of $y(x)$ by integrating $\dfrac{{dy}}{{dx}}$ and it can seen that $y(x)$ involves the function $f(x)$ that means we need to simplify it get the value that can be substituted to get the required value of $y(x)$.
Complete step-by-step answer:
Given
$\dfrac{{dy}}{{dx}} = \dfrac{1}{2}\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}\left( {f(x)} \right)} \right)$
Integrating both side
$\int {\dfrac{{dy}}{{dx}} = \int {\dfrac{1}{2}} } \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}\left( {f(x)} \right)} \right)$
Integrating of any differential function $\dfrac{d}{{dx}}\left( {g(x)} \right) = g(x) + c$
So by using this
$y = \dfrac{1}{2}{\sin ^{ - 1}}(f(x)) + c$
Now we know that $f(x) = {\left( {\sin \left( {{{\tan }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right)^2} - 1$
Now we made some modification in given above equation
Let assume ${\tan ^{ - 1}}x = \theta $ ( this assumption we made just to making easy to this equation)
And we know that
${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$
From this we can written as ${\cot ^{ - 1}}x = \dfrac{\pi }{2} - {\tan ^{ - 1}}x$ and we assume ${\tan ^{ - 1}}x = \theta $
So by putting this thing in $f(x) = {\left( {\sin \left( {{{\tan }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right)^2} - 1$
$f(x) = {\left( {\sin \theta + \sin \left( {\dfrac{\pi }{2} - \theta } \right)} \right)^2} - 1$
Using
$\because {\cot ^{ - 1}}x = \dfrac{\pi }{2} - {\tan ^{ - 1}}x = \dfrac{\pi }{2} - \theta $
Now, we know that $\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta $
So, $f(x) = {\left( {\sin \theta + \cos \theta } \right)^2} - 1$
Now, we know that ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
${\left( {\sin \theta + \cos \theta } \right)^2} = {\sin ^2}\theta + {\cos ^2}\theta + 2\sin \theta \cos \theta $
Now $\because {\sin ^2}\theta + {\cos ^2}\theta = 1$
So from here we get
$\Rightarrow$$f(x) = 1 + 2\sin \theta \cos \theta - 1$
Simplifying the above, we get
$\Rightarrow$$f(x) = 2\sin \theta \cos \theta $
Using
$\because 2\sin \theta \cos \theta = \sin 2\theta $
we get
$\therefore f(x) = \sin 2\theta $
Now, put this value in
$y = \dfrac{1}{2}{\sin ^{ - 1}}(f(x)) + c$
we get
$\Rightarrow$$y(x) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin 2\theta } \right) + c$
Now replace value of $\theta $ by ${\tan ^{ - 1}}x$
So,
$\Rightarrow$$y(x) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin (2{{\tan }^{ - 1}}x)} \right) + c$
Now given that $y\left( {\sqrt 3 } \right) = \dfrac{\pi }{6}$
Hence,
$\Rightarrow$$\dfrac{\pi }{6} = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin (2{{\tan }^{ - 1}}\sqrt 3 )} \right) + c$
we get
$\because {\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{\pi }{3}$
By putting this value we get
$\Rightarrow$$\dfrac{\pi }{6} = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin \dfrac{{2\pi }}{3}} \right) + c$
Simplifying the above
$\Rightarrow$$\dfrac{\pi }{6} = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right) + c$
We get,
$\Rightarrow$$\dfrac{\pi }{6} = \dfrac{1}{2} \times \dfrac{\pi }{3} + c$
From here
$c = 0$
Now our $y(x) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin (2{{\tan }^{ - 1}}x)} \right)$
Now we have to find $y\left( { - \sqrt 3 } \right)$
So put $x = - \sqrt 3 $ in $y(x) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin (2{{\tan }^{ - 1}}x)} \right)$
We get
$\Rightarrow$$y( - \sqrt 3 ) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin \left( {(2{{\tan }^{ - 1}}( - \sqrt 3 )} \right)} \right)$
using
$\because {\tan ^{ - 1}}( - \sqrt 3 ) = - \dfrac{\pi }{3}$
By putting this we get
$\Rightarrow$ $y( - \sqrt 3 ) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin \left( { - \dfrac{{2\pi }}{3}} \right)} \right)$
using
$\because \sin \left( { - \dfrac{{2\pi }}{3}} \right) = - \dfrac{{\sqrt 3 }}{2}$
By putting this we get
$\Rightarrow$$y( - \sqrt 3 ) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)$
using
$\because {\sin ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right) = - \dfrac{\pi }{3}$
By putting this we get
$\Rightarrow$$y( - \sqrt 3 ) = \dfrac{1}{2}\left( { - \dfrac{\pi }{3}} \right)$
So it become
$\Rightarrow$$y( - \sqrt 3 ) = - \dfrac{\pi }{6}$
So option A is the correct answer.
Note: The best way to determine the specific value involving trigonometric function is to consider or to convert into the short term as in this the function $f(x)$ is simplified to short term that makes the solution extremely easy to solve otherwise it will be quite difficult to determine the result and if we need to determine the value of constant in that case we use the initial condition as in the above question.
Complete step-by-step answer:
Given
$\dfrac{{dy}}{{dx}} = \dfrac{1}{2}\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}\left( {f(x)} \right)} \right)$
Integrating both side
$\int {\dfrac{{dy}}{{dx}} = \int {\dfrac{1}{2}} } \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}\left( {f(x)} \right)} \right)$
Integrating of any differential function $\dfrac{d}{{dx}}\left( {g(x)} \right) = g(x) + c$
So by using this
$y = \dfrac{1}{2}{\sin ^{ - 1}}(f(x)) + c$
Now we know that $f(x) = {\left( {\sin \left( {{{\tan }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right)^2} - 1$
Now we made some modification in given above equation
Let assume ${\tan ^{ - 1}}x = \theta $ ( this assumption we made just to making easy to this equation)
And we know that
${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$
From this we can written as ${\cot ^{ - 1}}x = \dfrac{\pi }{2} - {\tan ^{ - 1}}x$ and we assume ${\tan ^{ - 1}}x = \theta $
So by putting this thing in $f(x) = {\left( {\sin \left( {{{\tan }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right)^2} - 1$
$f(x) = {\left( {\sin \theta + \sin \left( {\dfrac{\pi }{2} - \theta } \right)} \right)^2} - 1$
Using
$\because {\cot ^{ - 1}}x = \dfrac{\pi }{2} - {\tan ^{ - 1}}x = \dfrac{\pi }{2} - \theta $
Now, we know that $\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta $
So, $f(x) = {\left( {\sin \theta + \cos \theta } \right)^2} - 1$
Now, we know that ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
${\left( {\sin \theta + \cos \theta } \right)^2} = {\sin ^2}\theta + {\cos ^2}\theta + 2\sin \theta \cos \theta $
Now $\because {\sin ^2}\theta + {\cos ^2}\theta = 1$
So from here we get
$\Rightarrow$$f(x) = 1 + 2\sin \theta \cos \theta - 1$
Simplifying the above, we get
$\Rightarrow$$f(x) = 2\sin \theta \cos \theta $
Using
$\because 2\sin \theta \cos \theta = \sin 2\theta $
we get
$\therefore f(x) = \sin 2\theta $
Now, put this value in
$y = \dfrac{1}{2}{\sin ^{ - 1}}(f(x)) + c$
we get
$\Rightarrow$$y(x) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin 2\theta } \right) + c$
Now replace value of $\theta $ by ${\tan ^{ - 1}}x$
So,
$\Rightarrow$$y(x) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin (2{{\tan }^{ - 1}}x)} \right) + c$
Now given that $y\left( {\sqrt 3 } \right) = \dfrac{\pi }{6}$
Hence,
$\Rightarrow$$\dfrac{\pi }{6} = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin (2{{\tan }^{ - 1}}\sqrt 3 )} \right) + c$
we get
$\because {\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{\pi }{3}$
By putting this value we get
$\Rightarrow$$\dfrac{\pi }{6} = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin \dfrac{{2\pi }}{3}} \right) + c$
Simplifying the above
$\Rightarrow$$\dfrac{\pi }{6} = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right) + c$
We get,
$\Rightarrow$$\dfrac{\pi }{6} = \dfrac{1}{2} \times \dfrac{\pi }{3} + c$
From here
$c = 0$
Now our $y(x) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin (2{{\tan }^{ - 1}}x)} \right)$
Now we have to find $y\left( { - \sqrt 3 } \right)$
So put $x = - \sqrt 3 $ in $y(x) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin (2{{\tan }^{ - 1}}x)} \right)$
We get
$\Rightarrow$$y( - \sqrt 3 ) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin \left( {(2{{\tan }^{ - 1}}( - \sqrt 3 )} \right)} \right)$
using
$\because {\tan ^{ - 1}}( - \sqrt 3 ) = - \dfrac{\pi }{3}$
By putting this we get
$\Rightarrow$ $y( - \sqrt 3 ) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin \left( { - \dfrac{{2\pi }}{3}} \right)} \right)$
using
$\because \sin \left( { - \dfrac{{2\pi }}{3}} \right) = - \dfrac{{\sqrt 3 }}{2}$
By putting this we get
$\Rightarrow$$y( - \sqrt 3 ) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)$
using
$\because {\sin ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right) = - \dfrac{\pi }{3}$
By putting this we get
$\Rightarrow$$y( - \sqrt 3 ) = \dfrac{1}{2}\left( { - \dfrac{\pi }{3}} \right)$
So it become
$\Rightarrow$$y( - \sqrt 3 ) = - \dfrac{\pi }{6}$
So option A is the correct answer.
Note: The best way to determine the specific value involving trigonometric function is to consider or to convert into the short term as in this the function $f(x)$ is simplified to short term that makes the solution extremely easy to solve otherwise it will be quite difficult to determine the result and if we need to determine the value of constant in that case we use the initial condition as in the above question.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

