
Let \[f'(x) = \dfrac{{192{x^3}}}{{(2 + {{\sin }^4}\pi x)}}\]for all \[x \in R\] with \[f(\dfrac{1}{2}) = 0\]. If \[m \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x)dx} \leqslant M\], then the possible values of m and M are,A.\[m = 13,M = 24\]B.\[m = \dfrac{1}{4},M = \dfrac{1}{2}\]C.\[m = - 11,M = 0\]D.\[m = 1,M = 12\]
Answer
512.1k+ views
Hint: Firstly the condition for as \[x \in [\dfrac{1}{2},1]\] so putting the limiting value of x we can calculate the ranging value of \[f'(x)\].
Complete step-by-step answer:
Note: Estimate the range of x and from there calculate the range of \[f'(x)\]and \[f(x)\]. Hence integrate properly and the required answer will be obtained.
And use the concept of estimated value of function properly. If you did not know the value of \[f(x)\] then calculate the value of the known function which is just bigger or smaller than \[f(x)\].
Hence, after getting the idea of the value of \[f'(x)\] integrate both sides and get the range of \[f(x)\]. Hence, after getting the range of value of \[f(x)\] so we will get the values of m and M. Hence, our required answer will be obtained.
As the given equation is \[f'(x) = \dfrac{{192{x^3}}}{{(2 + {{\sin }^4}\pi x)}}\]for all \[x \in R\] with \[f(\dfrac{1}{2}) = 0\],
So, calculate the value of \[f'(x)\] for \[x \in [\dfrac{1}{2},1]\].
Hence at \[x = \dfrac{1}{2}\],
\[f'(\dfrac{1}{2}) = \dfrac{{192{{(\dfrac{1}{2})}^3}}}{{(2 + {{\sin }^4}(\dfrac{\pi }{2}))}}\]
Now using \[\sin \dfrac{\pi }{2} = 1\], and simplification we get,
\[ \Rightarrow f'(\dfrac{1}{2}) = \dfrac{{(\dfrac{{192}}{8})}}{{(2 + 1)}}\]
On solving we get,
\[ \Rightarrow f'(\dfrac{1}{2}) = \dfrac{{24}}{3} = 8\]
Now, calculate with above same procedure at \[x = 1\],
\[f'(1) = \dfrac{{192{{(1)}^3}}}{{(2 + {{\sin }^4}(\pi ))}}\]
Using, \[\sin \pi = 0\], we get,
\[ \Rightarrow f'(1) = \dfrac{{192}}{{(2)}} = 96\]
Hence the range of values of \[f'(x)\] can be given as,
\[8 \leqslant f'(x) \leqslant 96\]
Now, we can apply the integration in the above inequality for the value of \[x \in [\dfrac{1}{2},x]\]
\[ \Rightarrow \int\limits_{\dfrac{1}{2}}^x 8 .dx \leqslant \int\limits_{\dfrac{1}{2}}^x {f'(x).dx} \leqslant \int\limits_{\dfrac{1}{2}}^x {96.} dx\]
On integrating we get,
\[ \Rightarrow \left. {8x} \right|_{\dfrac{1}{2}}^x \leqslant \left. {f(x)} \right|_{\dfrac{1}{2}}^x \leqslant \left. {96x} \right|_{\dfrac{1}{2}}^x\]
Now, on applying limits we get ,
\[ \Rightarrow 8x - 4 \leqslant f(x) - f(\dfrac{1}{2}) \leqslant 96x - 48\]
As the value of \[f(\dfrac{1}{2}) = 0\] so the above inequality will be,
\[ \Rightarrow 8x - 4 \leqslant f(x) \leqslant 96x - 48\]
Now integrate the \[f(x)\] with the condition given in the question as,
\[ \Rightarrow \int\limits_{\dfrac{1}{2}}^1 {8x - 4.dx} \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x).dx} \leqslant \int\limits_{\dfrac{1}{2}}^1 {96x - 48.dx} \]
Hence, on integrating both sides of the inequality the maxima and minima value of the function can be obtained.
\[ \Rightarrow 4{x^2}|_{\dfrac{1}{2}}^1 - 4x|_{\dfrac{1}{2}}^1 \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x).dx} \leqslant 48{x^2}|_{\dfrac{1}{2}}^1 - 48x|_{\dfrac{1}{2}}^1\]
On applying limits we get,
\[ \Rightarrow 4(1 - \dfrac{1}{4}) - 4(1 - \dfrac{1}{2}) \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x).dx} \leqslant 48(1 - \dfrac{1}{4}) - 48(1 - \dfrac{1}{2})\]
On further simplifying, we get,
\[ \Rightarrow 4(\dfrac{3}{4}) - 4(\dfrac{1}{2}) \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x).dx} \leqslant 48(\dfrac{3}{4}) - 48(\dfrac{1}{2}) \]
\[ \Rightarrow 3 - 2 \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x).dx} \leqslant 36 - 24 \]
\[ \Rightarrow 1 \leqslant \int\limits_{\dfrac{1}{2}}^1 {f(x).dx} \leqslant 12 \]
From here we can obtain the idea about maximum and minimum value of the function.
So, option (D) is the correct answer.
And use the concept of estimated value of function properly. If you did not know the value of \[f(x)\] then calculate the value of the known function which is just bigger or smaller than \[f(x)\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
